

CS 6301 –Programming and Data structures –II

Nov-Dec 2015

Solved University Question Paper

PartA-(10X 2=20 Marks)

1. Give the significance of declaring member of a class static

A static member is shared by all objects of the class. All static data is initialized to zero when the first object is

created, if no other initialization is present.

2.What is the use of “this” pointer?

The ‘this’ pointer is passed as a hidden argument to all non static member function calls and is available as a local
variable within the body of all non static functions. ‘this’ pointer is a constant pointer that holds the memory address

of the current object.

3.How the C string differs from a C++ type string?
In C, strings are just char arrays which, by convention, end with a NULL byte. In C++, strings (std::string) are
objects with all the associated automated memory management and control which makes them a lot safer and easier

to use, especially for the novice.

4..What is dynamic initialization of objects?

Dynamic initialization is that in which initialization value isn't known at compile-time. It's computed at runtime to
initialize the variable.

5.Compare Overloaded functions versus function template.

In C++, two different functions can have the same name if their parameters are different; either because they

have a different number of parameters, or because any of their parameters are of a different type. template

<template-parameters> function-declaration. The template parameters are a series of parameters separated by

commas.

6.When do we use multiple catch handlers?

Multiple handlers (i.e., catch expressions) can be chained; each one with a different parameter type. Only the

handler whose argument type matches the type of the exception specified in the throw statement is executed.

 7.What are the various operations that can be performed on B Trees
 Adding an element to a B-tree.

 Removing an element from a B-tree.

 Searching for a specified element in a B-tree.

8.What are splay trees

A splay tree is a binary search tree in which restructuring is done using a scheme called splay. The splay is a

heuristic method which moves a given vertex v to the root of the splay tree using a sequence of rotations.

9.What is the minimum number of spanning tree possible for a complete graph with n vertices? The number of
spanning trees of G, denoted by t(G), is the total number of distinct spanning sub graphs of G that are trees. We

consider the problem of determining some special classes of graphs having the maximum number of spanning trees

(or the maximum spanning tree graph problem).

10.What is topological sorting

Topological or topological ordering of a directed graph is a linear ordering of its vertices such that for

every directed edge u v from vertex u to vertex v, u comes before v in the ordering.

11.i)How can you specify a class? (4)

Classes are an expanded concept of data structures: like data structures, they can contain data members,

but they can also contain functions as members.

An object is an instantiation of a class. In terms of variables, a class would be the type, and an object
would be the variable.

Classes are defined using either keyword class or keyword struct, with the following syntax:

class class_name {
 access_specifier_1:

 member1;

 access_specifier_2:
 member2;

 ...

} object_names;

ii) Describe different mechanisms of accessing data members and member functions in a class with

a suitable example.

Accessing Data Members of Class

Accessing a data member depends solely on the access control of that data member. If its public, then the
data member can be easily accessed using the direct member access (.) operator with the object of that

class.

If, the data member is defined as private or protected, then we cannot access the data variables directly.

Then we will have to create special public member functions to access, use or initialize the private and

protected data members. These member functions are also called Accessors and Mutator methods

or getter andsetter functions.

Accessing Public Data Members

Following is an example to show you how to initialize and use the public data members using the dot (.)

operator and the respective object of class.

class Student

{

 public:

 int rollno;

 string name;

};

int main()

{

 Student A;

 Student B;

 A.rollno=1;

 A.name="Adam";

 B.rollno=2;

 B.name="Bella";

 cout <<"Name and Roll no of A is :"<< A.name << A.rollno;

 cout <<"Name and Roll no of B is :"<< B.name << B.rollno;

}

Accessing Private Data Members

To access, use and initialize the private data member you need to create getter and setter functions, to get

and set the value of the data member.

The setter function will set the value passed as argument to the private data member, and the getter

function will return the value of the private data member to be used. Both getter and setter function must

be defined public.

Example :

class Student

{

 private: // private data member

 int rollno;

 public: // public accessor and mutator functions

 int getRollno()

 {

 return rollno;

 }

 void setRollno(int i)

 {

 rollno=i;

 }

};

int main()

{

 Student A;

 A.rollono=1; //Compile time error

 cout<< A.rollno; //Compile time error

 A.setRollno(1); //Rollno initialized to 1

 cout<< A.getRollno(); //Output will be 1

}

11.b i)Explain the different types of constructor with suitable examples

Constructors

Constructors are special class functions which performs initialization of every object. The Compiler calls

the Constructor whenever an object is created. Constructors iitialize values to object members after
storage is allocated to the object.

class A

{
 int x;

 public:

 A(); //Constructor
};

While defining a contructor you must remeber that the name of constructor will be same as the name of

the class, and contructors never have return type.

Constructors can be defined either inside the class definition or outside class definition using class name
and scope resolution :: operator.

class A

{

 int i;
 public:

 A(); //Constructor declared

};

A::A() // Constructor definition

{

 i=1;
}

Types of Constructors

Constructors are of three types :
1. Default Constructor

2. Parametrized Constructor

3. Copy Constructor

Default Constructor
Default constructor is the constructor which doesn't take any argument. It has no parameter.

Syntax :

class_name ()
{ Constructor Definition }

Example :

class Cube
{

int side;

public:

Cube()
 {

 side=10;

 }
};

int main()

{
Cube c;

cout << c.side;

}
Output : 10

In this case, as soon as the object is created the constructor is called which initializes its data members.

A default constructor is so important for initialization of object members, that even if we do not define a
constructor explicitly, the compiler will provide a default constructor implicitly.

class Cube

{

 int side;
};

int main()
{

 Cube c;

 cout << c.side;
}

Output : 0

In this case, default constructor provided by the compiler will be called which will initialize the object

data members to default value, that will be 0 in this case.

Parameterized Constructor

These are the constructors with parameter. Using this Constructor you can provide different values to data

members of different objects, by passing the appropriate values as argument.
Example :

class Cube

{
 int side;

 public:

 Cube(int x)
 {

 side=x;

 }

};

int main()

{
 Cube c1(10);

 Cube c2(20);

 Cube c3(30);
 cout << c1.side;

 cout << c2.side;

 cout << c3.side;

}
OUTPUT : 10 20 30

By using parameterized construcor in above case, we have initialized 3 objects with user defined values.

We can have any number of parameters in a constructor.
b. ii)Describe the different types of storage classes

A storage class defines the scope (visibility) and life-time of variables and/or functions within a C++

Program. These specifiers precede the type that they modify.

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{

int

mount;

auto int

month;
}
The example above defines two variables with the same storage class, auto can only be used within

functions, i.e., local variables.
The register Storage Class

• The register storage class is used to define local variables that should be stored in a register instead of RAM.
• This means that the variable has a maximum size equal to the register size and can't have the unary '&

operator applied to it (as it does not have a memory location).
{

register int miles;
}

• The register should only be used for variables that require quick access such as counters.

• It should also be noted that defining 'register' does not mean that the variable will be stored in a register.
• It means that it MIGHT be stored in a register depending on hardware and implementation restrictions.

The auto Storage Class
The auto storage class is the default storage class for all local variables.
{

int

mount;

auto int

month;
}
The example above defines two variables with the same storage class, auto can only be used within

functions, i.e., local variables.
The register Storage Class

• The register storage class is used to define local variables that should be stored in a register instead of RAM.
• This means that the variable has a maximum size equal to the register size and can't have the unary '&

operator applied to it (as it does not have a memory location).
{

register int miles;
}

• The register should only be used for variables that require quick access such as counters.
• It should also be noted that defining 'register' does not mean that the variable will be stored in a register.
• It means that it MIGHT be stored in a register depending on hardware and implementation restrictions.

The static Storage Class
• The static storage class instructs the compiler to keep a local variable in existence during the life-time of the

program instead of creating and destroying it each time it comes into and goes out of scope.
• Therefore, making local variables static allows them to maintain their values between function calls.
• The static modifier may also be applied to global variables. When this is done, it causes that variable's scope

to be restricted to the file in which it is declared.
• In C++, when static is used on a class data member, it causes only one copy of that member to be shared by

all objects of its class.
#include

<iostream.h>

void func(void);
static int count = 10; /* Global

variable */ main()
{

while(count--)
{

func();
}
return 0;

}
// Function

definition void

func(void)
{

static int i = 5; // local static

variable i++;
cout << "i is " << i ;
cout << " and count is " << count <<endl;

}
Output:
i is 6 and

count is 9 i is

7 and count is

8 i is 8 and

count is 7 i is

9 and count is

6 i is 10 and

count is 5 i is

11 and count

is 4 i is 12 and

count is 3 i is

13 and count

is 2 i is 14 and

count is 1 i is

15 and count

is 0
The extern Storage Class

• The extern storage class is used to give a reference of a global variable that is visible to ALL the program

files.
• When 'extern' is used the variable cannot be initialized as all it does is point the variable name at a storage

location that has been previously defined.

#include

<iostream>

int count ;
extern void

write_extern();

main()
{

count =

5;

write_ex

tern();
}

The mutable Storage Class

• The mutable specifier applies only to class objects.

• It allows a member of an object to override constness.
• That is, a mutable member can be modified by a const member function.

12.a.i) Write a C++ program to overload the increment operator in prefix and postfix forms (12)

using namespace std;

class Check
{

 private:

 int i;

 public:

 Check(): i(0) { }

 Check operator ++() /* Notice, return type Check*/
 {

 Check temp; /* Temporary object check created */

 ++i; /* i increased by 1. */

 temp.i=i; /* i of object temp is given same value as i */
 return temp; /* Returning object temp */

 }

 void Display()
 { cout<<"i="<<i<<endl; }

};

int main()
{

 Check obj, obj1;

 obj.Display();

 obj1.Display();
 obj1=++obj;

 obj.Display();

 obj1.Display();
 return 0;

}

Output

i=0
i=0

i=1

i=1

Operator Overloading of Postfix Operator

#include <iostream>

using namespace std;

class Check

{
 private:

 int i;

 public:

 Check(): i(0) { }
 Check operator ++ ()

 {

 Check temp;
 temp.i=++i;

 return temp;

 }

/* Notice int inside barcket which indicates postfix increment. */

 Check operator ++ (int)

 {

 Check temp;

 temp.i=i++;
 return temp;

 }

 void Display()

 { cout<<"i="<<i<<endl; }
};

int main()

{
 Check obj, obj1;

 obj.Display();

 obj1.Display();
 obj1=++obj; /* Operator function is called then only value of obj is assigned to obj1. */

 obj.Display();

 obj1.Display();

 obj1=obj++; /* Assigns value of obj to obj1++ then only operator function is called. */
 obj.Display();

 obj1.Display();

 return 0;
}

Output

i=0
i=0

i=1

i=1

i=2

i=1

12.a)ii) Distinguish the term overloading and overriding (4)

- Overriding of functions occurs when one class is inherited from another class. Overloading can occur
without inheritance.

- Overloaded functions must differ in function signature ie either number of parameters or type of

parameters should differ. In overriding, function signatures must be same.
- Overridden functions are in different scopes; whereas overloaded functions are in same scope.

- Overriding is needed when derived class function has to do some added or different job than the base

class function.
- Overloading is used to have same name functions which behave differently depending upon

parameters passed to them.

12.b.i)Write a C++ program to explain how the runtime polymorphism is achieved (8)

#include<iostream>

using namespace std;

class Base
{

public:

 virtual void show() { cout<<" In Base \n"; }
};

class Derived: public Base

{

public:
 void show() { cout<<"In Derived \n"; }

};

int main(void)
{

 Base *bp = new Derived;

 bp->show(); // RUN-TIME POLYMORPHISM
 return 0;

}
ii) Illustrate any four types of inheritance supported in C++ with suitable example (8)
Types of Inheritance
In C++, we have 5 different types of Inheritance. Namely,

1. Single Inheritance

2. Multiple Inheritance
3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance (also known as Virtual Inheritance)

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most simplest form

of Inheritance.

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherits from a single base class.

Multilevel Inheritance
In this type of inheritance the derived class inherits from a class, which in turn inherits from some other

class. The Super class for one, is sub class for the other.

Hybrid (Virtual) Inheritance
Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

13.a.i)Describe the components of STL(8)(NOV/DEC 2015) (APRIL/MAY 2016)

STL has generic software components called container. These are classes contain other object.
Two container :

• Sequence container – Vector, List, Deque
• Associative sorted Container – set, Multiset, map andmultimap.

o Without writing own routine for programusing array,list,queue, etc.,stl provides tested and

debugged components readily available. It provide reusability of code.
o Eg: queue is used in os program to store program for execution.
o Advantage of readymade components :

• Small in number
• Generality
• Efficient, Tested, Debugged and standardized

• Portability and reusability

Component Description

Containers Containers are used to manage collections of objects of a certain kind.

There are several different types of containers like deque, list, vector,

map etc.

Algorithms Algorithms act on containers. They provide the means by which you

will perform initialization, sorting, searching, and transforming of the

contents of containers.

Iterators Iterators are used to step through the elements of collections of
objects. These collections may be containers or subsets of containers.

ii)Write a class template to represent a stack of any possible data type

#include <iostream>

#include <vector>
#include <cstdlib>

#include <string>

#include <stdexcept>

using namespace std;
template <class T>

class Stack {

 private:
 vector<T> elems; // elements

 public:
 void push(T const&); // push element

 void pop(); // pop element

 T top() const; // return top element

 bool empty() const{ // return true if empty.
 return elems.empty();

 }

};
template <class T>

void Stack<T>::push (T const& elem)

{

 // append copy of passed element
 elems.push_back(elem);

}

template <class T>

void Stack<T>::pop ()

{
 if (elems.empty()) {

 throw out_of_range("Stack<>::pop(): empty stack");

 }

 // remove last element
 elems.pop_back();

}

template <class T>

T Stack<T>::top () const

{

 if (elems.empty()) {
 throw out_of_range("Stack<>::top(): empty stack");

 }

 // return copy of last element
 return elems.back();

}

int main()

{

 try {

 Stack<int> intStack; // stack of ints
 Stack<string> stringStack; // stack of strings

 // manipulate int stack
intStack.push(7);

 cout << intStack.top() <<endl;

 // manipulate string stack

 stringStack.push("hello");

 cout << stringStack.top() << std::endl;

 stringStack.pop();
 stringStack.pop();

 }

 catch (exception const& ex) {
 cerr << "Exception: " << ex.what() <<endl;

 return -1;

 }

}

13.b.i)Write a C++ program to handle a divide by zero exception

#include<iostream.h>
#include<conio.h>

void main()

{
 int a,b,c;

 float d;

 clrscr();

 cout<<"Enter the value of a:";
 cin>>a;

 cout<<"Enter the value of b:";

 cin>>b;
 cout<<"Enter the value of c:";

 cin>>c;

 try

 {

 if((a-b)!=0)
 {

 d=c/(a-b);

 cout<<"Result is:"<<d;

 }
 else

 {

 throw(a-b);
 }

 }

 catch(int i)

 {

 cout<<"Answer is infinite because a-b is:"<<i;

 }

 getch();

}

Output:

 Enter the value for a: 20
 Enter the value for b: 20

 Enter the value for c: 40

 Answer is infinite because a-b is: 0
ii)Write a function template to find the maximum value contained in an array. (8) (NOV/DEC 2015)

#include <iostream>

using std::cout;

using std::endl;

template<class T> T max(const T* data, int size) {
 T result = data[0];

 for(int i = 1 ; i < size ; i++)

 if(result < data[i])
 result = data[i];

 return result;

 }

template<class T> T min(const T* data, int size) {
 T result = data[0];

 for(int i = 1 ; i < size ; i++)

 if(result > data[i])
 result = data[i];

 return result;

 }
int main() {

 double data[] = {1.5, 4.6, 3.1, 1.1, 3.8, 2.1};

 int numbers[] = {2, 22, 4, 6, 122, 12, 1, 45};

 const int dataSize = sizeof data/sizeof data[0];

 cout << "Minimum double is " << min(data, dataSize) << endl;

 cout << "Maximum double is " << max(data, dataSize) << endl;

 const int numbersSize = sizeof numbers/sizeof numbers[0];

 cout << "Minimum integer is " << min(numbers, numbersSize) << endl;

 cout << "Maximum integer is " << max(numbers, numbersSize) << endl;

 return 0;

}
Minimum double is 1.1

Maximum double is 4.6

Minimum integer is 1
Maximum integer is 122

14.a)i)Define AVL Tree and starting with an empty AVL search Tree insert the following

elements in the given order: 35,45,65,55,75,15,25(8) (NOV/DEC 2015)

1.Insert 35 Insert 45 Insert 65 Insert 55

 (35) (35) (35) (35)

 \ \ \

 (45) (45) (45)

 \ / \

 (65) (55) (65)

Insert 75 Insert 15 Insert 25

 (35) (35) (35)

 \ / \ / \

 (45) (15) (45) (15) (45)

 / \ / \ / \ / \

 (55)(65) (55)(65) (25)(55)(65)

 \ \ \

 (75) (75) (75)

ii)Explain the AVL rotations with suitable example.(8)(NOV/DEC 2015)

14.b)llustrate the construction of Binomial Heaps and its operations with a suitable example(16)(NOV/DEC

2015)

The binomial tree Bk is an ordered tree defined recursively, the binomial tree B0 consists of a single node. The

binomial tree Bk consists of two binomial trees Bk-1 that are linked together: the root of one is the leftmost child of the

root of the other.

Some properties of binomial trees are given by the following lemma.

A binomial heap H is a set of binomial trees that satisfies the following binomial-

heap properties.

1. Each binomial tree in H is heap-ordered: the key of a node is greater than or equal

to the key of its parent.

2. There is at most one binomial tree in H whose root has a given degree.

15.i)Compute the minimum spanning tree for the following graph

(8)(NOV/DEC 2015)

ii) Discuss any two applications of depth first search(8)(NOV/DEC 2015)

1. GPS Navigation systems: Navigation systems such as the Google Maps, which can give

directions to reach from one place to another use BFS. They take your location to be the

source node and your destination as the destination node on the graph. (A city can be

represented as a graph by taking landmarks as nodes and the roads as the edges that connect

the nodes in the graph.) BFS is applied and the shortest route is generated which is used to

give directions or real time navigation.

2. Computer Networks: Peer to peer (P2P) applications such as the torrent clients need to

locate a file that the client (one who wants to download the file) is requesting.This is

achieved by applying BFS on the hosts (one who supplies the file) on a network. Your

computer is the host and it keeps traversing through the network to find a host for the

required file (maybe your favourite movie).

15.b)Illustrate the Dijkstra’s algorithm algorithm for finding the shortest path with the following a

sample graph(16)

Initially:

S = {1} D[2] = 10 D[3] = D[4] = 30 D[5] = 100

Iteration 1
Select w = 2, so that S = {1, 2}

D[3] = min(, D[2] + C[2, 3]) = 60
D[4] = min(30, D[2] + C[2, 4]) = 30

D[5] = min(100, D[2] + C[2, 5]) = 100

Iteration 2
Select w = 4, so that S = {1, 2, 4}

D[3] = min(60, D[4] + C[4, 3]) = 50

D[5] = min(100, D[4] + C[4, 5]) = 90

Iteration 3
Select w = 3, so that S = {1, 2, 4, 3}

D[5] = min(90, D[3] + C[3, 5]) = 60

teration 4
Select w = 5, so that S = {1, 2, 4, 3, 5}

D[2] = 10

D[3] = 50

D[4] = 30

D[5] = 60

ii) Illustrate the comparison of Floyds algorithm with dijkstra’s algorithm(4)
Dijkstra’s Algorithm:

• Finds shortest path from a given startNode to all other nodes reachable from it in a digraph.

• Assumes that each link cost c(x, y) ≥ 0.
• Complexity: O(N 2), N = #(nodes in the digraph)

Floyd’s Algorithm:

• Finds a shortest-path for all node-pairs (x, y).

 • We can have one or more links of negative cost, c(x, y)

 Complexity: O(N 3), where N = #(nodes in digraph).

12.Find the minimum spanning tree for the given graph using both Prims and kruskal’s algorithm

and write that algorithms(8+8) (APRIL/MAY 2016)

 MST is a SPANNING Tree
o Nodes of MST = Nodes of G

o MST contains a path between any two nodes

 MST is a MINIMUM Spanning Tree

o Sum of edges is a minimum

 MST may not be unique
 Initialize

o M = {}

o vertex sets: {A},{B},{C},{D},{E},{F},{G},{H},{I}

o edge list, sorted by weight: 1 - CF, 2- GI, 3- EF, 3 -CE, 5- DH, 6- FH, 7- DE, 8-BD, 9-
BC, 9-GH, 10-AB, 11-HI, 12-AC

 (u, v) = (C, F)

o C and F are in different vertex sets (ie {C} and {F}
o Add CF to M: M = {CF} (omit the comma from the edge)

o Merge {C} and {F}: {A},{B},{C,F},{D},{E},{G},{H},{I}

 (u, v) = (G, I)
o G and I are in different vertex sets (ie {G} and {I}

o Add GI to M: M = {CF, GI}

o Merge {G} and {I}: {A},{B},{C,F},{D},{E},{G,I},{H}

 (u, v) = (E, F)
o E and F are in different vertex sets (ie {E} and {C,F}

o Add EF to M: M = {CF, EF, GI}

o Merge {E} and {F}: {A},{B},{C,E,F},{D},{G,I},{H}
 (u, v) = (C, E)

o C and E are both in {C,E,F}: don't add CE since it would create a cycle

A Minimum Spanning Tree (MST) is a subgraph of an undirected graph such that the subgraph spans

(includes) all nodes, is connected, is acyclic, and has minimum total edge weight

struct Edge

{

 int src, dest, weight;
};

struct Graph
{

 int V, E;

 struct Edge* edge;
};

struct Graph* createGraph(int V, int E)
{

 struct Graph* graph = (struct Graph*) malloc(sizeof(struct Graph));

 graph->V = V;
 graph->E = E;

 graph->edge = (struct Edge*) malloc(graph->E * sizeof(struct Edge));

 return graph;

}

struct subset

{

 int parent;

 int rank;

};

int find(struct subset subsets[], int i)

{

 // find root and make root as parent of i (path compression)
 if (subsets[i].parent != i)

 subsets[i].parent = find(subsets, subsets[i].parent);

 return subsets[i].parent;

}

void Union(struct subset subsets[], int x, int y)

{

 int xroot = find(subsets, x);

 int yroot = find(subsets, y);

 if (subsets[xroot].rank < subsets[yroot].rank)
 subsets[xroot].parent = yroot;

 else if (subsets[xroot].rank > subsets[yroot].rank)

 subsets[yroot].parent = xroot;

 else

 {

 subsets[yroot].parent = xroot;
 subsets[xroot].rank++;

 }

}

int myComp(const void* a, const void* b)

{

 struct Edge* a1 = (struct Edge*)a;
 struct Edge* b1 = (struct Edge*)b;

 return a1->weight > b1->weight;

}

void KruskalMST(struct Graph* graph)

{
 int V = graph->V;

 struct Edge result[V]; // Tnis will store the resultant MST

 int e = 0; // An index variable, used for result[]

 int i = 0; // An index variable, used for sorted edges

 qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp);

 struct subset *subsets =

 (struct subset*) malloc(V * sizeof(struct subset));

 for (int v = 0; v < V; ++v)

 {

 subsets[v].parent = v;

 subsets[v].rank = 0;
 }

 while (e < V - 1)

 {

 struct Edge next_edge = graph->edge[i++];

 int x = find(subsets, next_edge.src);

 int y = find(subsets, next_edge.dest);

 if (x != y)

 {

 result[e++] = next_edge;

 Union(subsets, x, y);
 }

 }

 printf("Following are the edges in the constructed MST\n");

 for (i = 0; i < e; ++i)

 printf("%d -- %d == %d\n", result[i].src, result[i].dest,
 result[i].weight);

 return;

}

int main()

{

 int V = 4; // Number of vertices in graph

 int E = 5; // Number of edges in graph

 struct Graph* graph = createGraph(V, E);

 graph->edge[0].src = 0;

 graph->edge[0].dest = 1;

 graph->edge[0].weight = 10;

 graph->edge[1].src = 0;

 graph->edge[1].dest = 2;
 graph->edge[1].weight = 6;

 graph->edge[2].src = 0;

 graph->edge[2].dest = 3;
 graph->edge[2].weight = 5;

 graph->edge[3].src = 1;
 graph->edge[3].dest = 3;

 graph->edge[3].weight = 15;

 graph->edge[4].src = 2;

 graph->edge[4].dest = 3;

 graph->edge[4].weight = 4;

 KruskalMST(graph);

 return 0;

}

