 IT6503 Web Programming Dept of Information Technology 2016-2017
IT6503 WEB PROGRAMMING
QUESTION BANK
UNIT I
SCRIPTING
PART- A (2 Marks)
1. Define URI, URL, and URN.
· URI (Uniform Resource Identifier): It identifies an object on the Internet.
· URL (Uniform Resource Locator): It is a specification for identifying an object such as a file, newsgroup,
and CGI program or e-mail address by indicating the exact location on the internet.
· URN (Uniform Resource Name): It is a method for referencing an object without declaring the full path to the object.
2. How will you create a password field in a HTML form?
	<input type=”password” name=”pwd” size=”15”>
3. Define the GET() and POST() method.
GET():
The GET method means retrieves whatever information (in the form of an entity) is identified by the Request-URI. If the Request-URI refers to a data-producing process, it is the produced data which shall be returned as the entity in the response and not the source text of the process, unless that text happens to be the output of the process.
POST():
The POST method is used to request that the destination server accept the entity enclosed in the request as a new subordinate of the resource identified by the Request-URI in the Request-Line.
4. List and explain any two HTML elements
	i) Form element
Action attribute specifies a url to which the information collected on the form should be sent when user submits the form method attribute to make the request.
 	ii) div element almost identical to span
The <div> tag defines logical divisions (defined) in your Web page.
Div block element span inline element
5. Write HTML code to display an image.

The height and width attributes are used to specify the height and width of an image.
 The attribute values are specified in pixels by default:
 		
6. Write html code to create the following table

	W
	X

	Y
	Z

<TABLE>
<TR>
<TD>W</TD>
<TD>X</TD>
</TR>
<TR>
<TD>Y</TD>
<TD>Z</TD>
</TR>
</TABLE>
7. List the different methods defined in document and window object of java script.
Document Object Methods
· document.title -	 Sets or returns the title of the document
· document.URL -	 Returns the full URL of the HTML document
· document.write()-	Writes HTML expressions or JavaScript code to a document
Window Object Methods
· alert() -	 Displays an alert box with a message and an OK button
· close() -	 Closes the current window
· confirm() -	 Displays a dialog box with a message and an OK and a Cancel button
8. What is JavaScript?
A lightweight programming language that runs in a Web browser (client-side). Embedded in HTML files and can manipulate the HTML itself and JavaScript is a scripting language. Interpreted, not compiled.
9. What is meant by ID selectors?
The #id selector styles the element with the specified id. The rule applies only to the document element with the given id attribute. In HTML element IDs must have unique values within the same page.
Example
Style the element with id="firstname":
#firstname {
 background-color: yellow; }
10. Which function can be used to create an alert popup dialog box? Write an example to
 create an alert popup box.
alert () function can be used to create an alert popup dialog box.
 Example
<html>
<head>
<script type="text/javascript">
function compute ()
{
alert ("Enter the phone no");
}
</script>
</head>
</html>
11. How will you include CSS in a web site?
Inline
Inline styles are when you just insert the type of style you want inside another tag, using the style attribute. This is usually the least useful way to use CSS.
<p style="width:100%; color:#660099; text-align:right; background-color:#ffcc00;" >
Embedded
Styles can also be placed in the document using the <style> tag. The <style> tag is usually placed in the head section of the document, where it will apply to the whole document.
<style> <!--
	p { color:#009900;
	font-family:"comic sans ms",sans-serif; }
	h1 { color:#660000; font-size:12pt; }
 </style>
External styles
Styles can also be set in an external style sheet which is linked to the page with a <link> tag. For example the style sheet for this site is included like this:
<link rel="stylesheet" type="text/css" href="class.css" />
12. Mention some text formatting tags.
· <p> </p> - is used for introducing various paragraphs.
·
 - this tag is used for giving an empty blank line.
· HEADING TAGS - <h1> </h1> .. <h6> </h6> is used to introduce various headings.
<h1> is the biggest and h6 is the smallest heading tag.
· <HR> TAG – is used to draw lines and horizontal rules.
· ,<I>,<U> for bold, italic and underline respectively.
13. What do you mean by Relative URL?
 	Partial internet address which points to a directory or file in relation to the current directory or file. When creating a link in a website's code, if just a filename is given without any other modifications, that is an indicator to find that file within the current directory and link to it. Modifiers can be added to a relative URL which indicates that the file is found in a higher directory, or code can be added to indicate that the file is in a deeper directory. Relative URLs are often easier to maintain than absolute URLs.
14. Mention the need for cascading style sheets.
 	CSS are powerful mechanism for adding styles (e.g. Fonts, Colors, Spacing) to web documents.
· They enforce standards and uniformity throughout a web site and provide numerous attributes to create dynamic effects.
· The advantage of a style sheet includes the ability to make global changes to all documents from a single location. Style sheets are said to cascade when they combine to specify the appearance of a page.
15. Explain array creation in Java script with example.
An array can be defined in three ways.
 The following code creates an Array object called myCars:
· var myCars=new Array(); // regular array (add an optional integer myCars[0]="Saab";
· // argument to control array's size) myCars[1]="Volvo"; myCars[2]="BMW";
· var myCars=new Array("Saab","Volvo","BMW"); // condensed array
· var myCars=["Saab","Volvo","BMW"]; // literal array
16. List and explain any two java script built in objects.
String Object
The String object is used to manipulate a stored piece of text.
Example
var val = new String(“Hello world!");
document.write(val.length)
Date Object
The Date object is used to work with dates and times.
We define a Date object with the new keyword.
Example
var myDate=new Date()
17. List the features of CSS3.
Some of the most important CSS3 modules are:
· Selectors.
· Box Model.
· Backgrounds and Borders.
· Image Values and Replaced Content.
· Text Effects.
· 2D/3D Transformations.
· Animations.
· Multiple Column Layout.
18. What are literals?
Literal values are the ones you type into mathematical or string expressions. For example 23 (an integer), 12.32E23 (a floating point), or 'flopsy the Hamster' (a string). String literals can be enclosed by either single or double quotes. For example: 'literal string' "literal string" 'literal string with "double quotes" inside'
19. Write down the usage of 'canvas' in HTML 5(NOV/DEC 2015)
The HTML <canvas> element is used to draw graphics, on the fly, via scripting (usually JavaScript).
The <canvas> element is only a container for graphics. You must use a script to actually draw the graphics.
Canvas has several methods for drawing paths, boxes, circles, text, and adding images.
20. What are the client side scripts and server side scripts? Differentiate(NOV/DEC 2015)

	client side scripting
	server side scripting

	The client is the system on which the Web browser is running.
	The server is where the Web page and other content lives.

	JavaScript is the main client-side scripting language for the Web.

	JSP and Servlets is the server-side scripting language for the Web.

	Client-side scripts are interpreted by the browser.
	The server sends pages to the user/client on request.

PART B (16 MARKS)

1. List the features of HTML5 and CSS3.

HTML5 is the latest evolution of the standard that defines HTML. The term represents two different concepts:
· It is a new version of the language HTML, with new elements, attributes, and behaviors,
· It has a larger set of technologies that allows more diverse and powerful Web sites and applications.
This set is sometimes called HTML5 & friends and often shortened to just HTML5.
Designed to be usable by all Open Web developers, this reference page links to numerous resources about HTML5 technologies, classified into several groups based on their function.
· Semantics: allowing you to describe more precisely what your content is.
· Connectivity: allowing you to communicate with the server in new and innovative ways.
· Offline & Storage: allowing webpages to store data on the client-side locally and operate
offline more efficiently.
· Multimedia: making video and audio first-class citizens in the Open Web.
· 2D/3D Graphics & Effects: allowing a much more diverse range of presentation options.
· Performance & Integration: providing greater speed optimization and better usage of
computer hardware.
· Device Access: allowing for the usage of various input and output devices.
· Styling: letting authors write more sophisticated themes.

THE <CANVAS> ELEMENT :
HTML 5 defines the <canvas> element as “a resolution-dependent bitmap canvas which can be used for rendering graphs, game graphics, or other visual images on the fly.” A canvas is a rectangle in your page where you can use JavaScript to draw anything you want.
A <canvas> element has no content and no border of its own.
The markup looks like this:
<canvas id="a" width="300" height="225"></canvas>

[image:]

CSS3:
CSS3:
CSS3 is the latest standard for CSS.
CSS3 is completely backwards-compatible with earlier versions of CSS.
CSS3 has been split into "modules". It contains the "old CSS specification" (which has been split into smaller pieces). In addition, new modules are added.
Some of the most important CSS3 modules are:
· Selectors
· Box Model
· Backgrounds and Borders
· Image Values and Replaced Content
· Text Effects
· 2D/3D Transformations
· Animations
· Multiple Column Layout
· User Interface

	Values
	Description

	border-radius
	Use this element for setting four boarder radius property

	border-image-source
	Used to set the image path

	background-image
	Used to specify the background image

CSS3 Rounded corners are used to add special colored corner to body or text by using the border-radius property.
#rcorners7 { border-radius: 60px/15px; }
[image:]
CSS Border image property is used to add image boarder to some elements.you don't need to use any HTML code to call boarder image.
#borderimg1 { border-image-source: url(/css/images/border.png);}

CSS Multi background property is used to add one or more images at a time without HTML code, We can add images as per our requirement.

#multibackground { background-image: url(/css/images/logo.png), url(/css/images/border.png); }

2. List and explain the properties and methods of document and window object.

Window object :
Window Object there are lots of other objects you can access. Notice that the two objects are separated by a dot
window objects:
1. window.document
Allows you to access all your HTML elements. We'll go into more detail about the document object later.
2. window.history
Access information about browsing history. This object is of limited use since you can't get at which pages a user has visited, just how many pages are in the browsing history. You can also access the methods history.back, history.forward and history.go. There's not many situations where you want to, though.
3. window.innerHeight and window.innerWidth
Gets the height and width of the available space on the page
4. window.screen
Gets information about the browser screen.

Window methods:
· window.alert("Alert Message")
· window.prompt("Prompt Message","")
· window.confirm("OK or Cancel")
· window.clearInterval
· window.clearTimeout
· window.close
· window.open
· window.print
· window.setInterval
· window.setTimeout

Window Events
There are lots of window events you can use. You can probably guess what most of them are used for.
· onChange
· onClose
· onKeydown
· onKeypress
· onKeyup
· onLoad
· onMousedown
· onMousemove
· onMouseout
· onMouseover
· onMouseup
· onScroll
· onSelect
· onSubmit
· onUnload
DOCUMENT NODE or DOCUMENT OBJECT:
· The document object itself is considered to be a Dom tree node
· html element is the root of HTML document
· In DOM the document object is treated as the root of the node tree
· Also treated as the parent of html Element instance
· useful document properties
· title, body,
useful document methods
· getElementById(string),
· getElementByTagName(string),
The document's write method can be used to insert text onto the web page
document.write(window.screen.height);

Find and Access Nodes
You can find the element you want to manipulate in several ways:
· By using the getElementById() and getElementsByTagName() methods
· By using the parentNode, firstChild, and lastChild properties of an element node

3. Create a registration form for an educational web site with E-Learning resources. All form controls should have appropriate name attributes. Use the GET method for form submission, Verify the form controls using regular expression and specify an empty string for the action attribute.

VERIFYING FORMS:
<html>
<head>
<script>
var f1=1;
function isEmpty()
{
//var len=document.getElementById("firstname").value;
if(document.getElementById("firstname").value.length == 0)
{
		window.alert("User name should not be blank");
		//document.getElementById("firstname").focus(); // set the focus to this input
		f1=0;
}
}

function isAlphabet(){
	isEmpty();
	var alphaExp = /^[a-zA-Z]+$/;
	if(document.getElementById("firstname").value.match(alphaExp)){
		f1=1;
	}else{
		alert("First name should not contain digits");
		document.getElementById("firstname").focus();
		f1=0;
	}
}

function isAlphanumeric(){
	var alphaExp = /^[0-9a-zA-Z]+$/;
	if(document.getElementById("addr").value.match(alphaExp)){
		f1=1;
	}else{
		alert("Invalid Address");
		elem.focus();
		f1=1;
	}
}	

function isNumeric()
{
	var numericExpression = /^[0-9]+$/;
	if(document.getElementById("zip").value.match(numericExpression)){
		f1=1;
	}
	else{
		alert("Zip Code should not contain Characters");
		//document.getElementById("zip").focus();
		f1=0;
	}
}

function lengthRestriction()
{
var uInput = document.getElementById("username").value;
if(uInput.length >= 6 && uInput.length <= 8)
{
		f1=1;
}
else{
		alert("Please enter between 6 and 8 characters");
		document.getElementById("username").value="";
		document.getElementById("username").focus();
		f1=0;
	}
}

function madeSelection(){
	if(document.getElementById("state").value == "Please Choose")
{
		alert("Select State");
		
		f1=0;
	}else{
		f1=1;
	}
}

function emailValidator(){
	var emailExp = /^[\w\-\.\+]+\@[a-zA-Z0-9\.\-]+\.[a-zA-z0-9]{2,4}$/;
	if(document.getElementById("email").value.match(emailExp)){
		return true;
	}
	else{
		alert("Invalid Email");
		
		return false;
	}
}

function Check()
{
if(f1==1)
alert("Registration Success");

if(f1==0)
alert("Registration Failure");

}

</script>
</head>
<body>

<form name="f1" >
First Name: <input type="text" id="firstname" onblur="isAlphabet()"/>

Address: <input type="text" id="addr" onblur="isAlphanumeric()"/>

Zip Code: <input type="text" id="zip" onblur="isNumeric()"/>

State: <select id="state" onblur="madeSelection()">
	<option>Please Choose</option>
	<option>AL</option>
	<option>CA</option>
	<option>TX</option>
	<option>WI</option>
</select>

Username(6-8 characters): <input type="text" id="username" onblur="lengthRestriction()"/>

Email: <input type="text" id="email" onblur="emailValidator()"/>

<input type="submit" value="Check Form" onclick="Check()"/>

</form>
</body>
</html>

4. i. Write java script to find sum of first n even number and display the result. Get the value of n from user.
Code:
<html>
<head>
<script>
function numberSum(N) {
 var total = 0;
 for(var i = 1; i <= N; i++){
 total += i;
 }
 return total;
}

function run(){
 val = document.getElementById("val").value;
 document.getElementById("results").innerHTML=val+": "+numberSum(val)
 }

</script>
</head>
<body>
<input id="val">
<input type="Submit" onclick="run();">
<p id="results"></p>
</body>
</html>
[image:]
ii Write java script to find factorial of a given number.
<html>
<head>
<script type="text/javascript">
function factorial(f,n)
{
l=1;
for(i=1;i<=n;i++)
l=l*i;
f.p.value=l;
}
</script>
</head>
<body>
<form>
number:<input type="text" name="t"></br>
<input type="button" value="submit" onClick="factorial(this.form,t.value)"></br>
result:<input type="text" name="p"></br>
</form>
</body>
</html>
[image:]

5. Explain Browser Object Model in detail.
HTML DOM Tree:
· The Document Object Model (DOM) is an API that allows programs to interact with HTML (or XML) documents
· The HTML DOM defines a standard for accessing and manipulating HTML documents.
[image: DOM HTML tree]
The HTML DOM is:
· A standard object model for HTML
· A standard programming interface for HTML
The HTML DOM defines the objects and properties of all HTML elements, and the methods to access them.
The HTML DOM is a standard for how to get, change, add, or delete HTML elements.
DOCUMENT TREE:
· NODE OBJECT:
· There are many types of nodes in the DOM document tree, representing elements, text, comments, the document type declaration, etc.
· In the HTML DOM, each node is an object.
· The DOM is defined by standard properties and methods.
· A method is an action you can do (like add or modify an element).
· A property is a value that you can get or set (like the name or content of a node).
· Properties are often referred to as something that is (i.e. the name of a node).
· Methods are often referred to as something that is done (i.e. remove a node).
· Every Object in the DOM document tree has properties and methods defined by the Node host object.
ELEMENT NODE:
· Nodes of type ELEMENT_NODE are instances of the
 Element host object
· Some methods of Element are
· getAttribute(String)
· setAttribute(String, String)
· hasAttribute(String)
TEXT NODE:
· Instances of the Text DOM object used to represent character data
· Node type for these elements is Node.TEXT_NODE
DOCUMENT NODE or DOCUMENT OBJECT:
· The document object itself is considered to be a Dom tree node
· html element is the root of HTML document
· In DOM the document object is treated as the root of the node tree
· Also treated as the parent of html Element instance
· useful document properties
· title, body,
useful document methods
· getElementById(string),
· getElementByTagName(string),
The document's write method can be used to insert text onto the web page
document.write(window.screen.height);

Find and Access Nodes
You can find the element you want to manipulate in several ways:
· By using the getElementById() and getElementsByTagName() methods
· By using the parentNode, firstChild, and lastChild properties of an element node
[image:]
[image:]
[image:]
[image:]
Example:
<!DOCTYPE html>
<html>
<body><div id="div1"><h1 id="h11">This is another paragraph.</h1><p id="p1">This is a new paragraph.</p></div><script>
x=document.getElementById("div1");
document.write(x.nodeType+"
");
document.write(x.nodeName+"
");
document.write(x.parentNode.nodeName+"
");
document.write(x.firstChild.nextSibling.nodeName+"
");
document.write(x.lastChild.previousSibling.nodeName+"
");
document.write(x.firstChild.nodeName+"
");
document.write(x.lastChild.nodeName+"
");
document.write(x.previousSibling+"
");
document.write(x.nextSibling+"
");

document.write(x.hasAttributes()+"
");

document.write(x.hasChildNodes()+"
");

var node=document.createElement("p");
var textnode=document.createTextNode("Water");
node.appendChild(textnode);
x.appendChild(node);
document.write(x.lastChild.nodeName+"
");
var newItem=document.createElement("h2")
var textnode=document.createTextNode("HEADING 2")
newItem.appendChild(textnode)
var p2=x.getElementsByTagName("p");
x.insertBefore(newItem,p2[1]);
var m=x.getElementsByTagName("p");
document.write(m[1].previousSibling.innerHTML+"
");
var y=x.getElementsByTagName("p");
document.write(y[0].innerHTML);
</script>
</body>
</html>

Output:
[image:]

6. How do you create frames? Why do we need them? Develop an application to explain the same.
Creating Frames
· To use frames on a page we use <frameset> tag instead of <body> tag.
· The <frameset> tag defines how to divide the window into frames.
· The rows attribute of <frameset> tag defines horizontal frames and cols attribute defines vertical frames.
· Each frame is indicated by <frame> tag and it defines which HTML document shall open into the frame.
Format
<frameset rows="pixels|%|*">
Attribute Values
Value	Description
pixels	The row height in pixels (like "100px" or just "100")
%	The row height in percent of the available space (like "50%")
*	The rest of the available space should be assigned this row

Need for Frame
•	Frames are a way of organizing your website. They allow you to divide up your window into various segments for different purposes.
•	Another reason might be to have your entire site's links visible on the page, while the actual 'content' - i.e. text scrolls as much as it needs.
Example
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN" "http://www.w3.org/TR/html4/frameset.dtd">
<html>
<head>
<title>Web Technology</title>
</head>
<frameset cols="200,*" frameborder="0" border="0" framespacing="0">
<frame name="menu" src="menu_1.html" marginheight="0" marginwidth="0" scrolling="auto" noresize>
<frame name="content" src="content.html" marginheight="0" marginwidth="0" scrolling="auto" noresize>
<noframes>
<p> Frame Example
</frameset>
</html>

7. List and explain in detail the various selector strings in CSS.
Java script statements consist of two parts
Selector string
Indicates the elements to which the rule should apply
Declaration block in { }
Specifies a value for one style property of those elements
· List of declaration separated by semicolons
· It is syntactically legal to split rules over several lines or write multiple rules on a single line

· Parts of a style rule (or statement)
[image:]
	
· Type selector : Type selector matches elements with the corresponding element type name.
 h1,h2,h3,h4,h5,h6 { background-color : purple }
· Universal selector : Every possible element type
· The universal selector matches any element type.
 * { font-weight : bold }
· ID selector : Matches an element that has a specific id attribute value. Since id attributes must have unique values, it can never match more than one element in a document.
 #p1, #p3 { background-color : aqua }
<p id="P1" class="takeNote">
 Paragraph with id="P1" and class="takeNote".
</p>
.
.
<p id="p3">
 This paragraph (id="p3") contains a
 hyperlink.
EXAMPLE PROGRAM:

[image:]
· Class selector :
 #p1, .takeNote { font-style : italic }
 span.special { font-size : x-large }
The difference between an ID and a class is that an ID can
be used to identify one element, whereas a class can be
used to identify more than one.
· Descendant selector : used to select elements that are descendants of another element in the document tree.
 ul span { font-variant : small-caps }
 ul ol li { letter-spacing : lem }
Predefined pseudo classes associated with anchor element
· a:link { color : black } – link that has not been visited recently
· a:visited { color : yellow } – visited once next time loaded
· a:hover { color : green } – positioning cursor over link without clicking the mouse button cause link to change green
a:active { color : red } - clicking and holding the mouse button change the colour to red

8. Explain about the various style sheets with examples. (Internal, External, Inline)
To create an inline style
a. Add the style attribute to the HTML tag.
b. The style declaration must be enclosed within double quotation marks.
To create an embedded style
c. Insert a <style> tag within the head section of HTML file.
d. Within the <style> tag, enclose the style declarations need to the entire Web page.
e. The style sheet language identifies the type of style used in the document.
f. The default and the most common language is “text/css” for use with CSS.
To create an External styles
g. Create a text file containing style declarations
h. Create a link to that file in each page of the Web site using a <link> tag.
i. Specify the link attributes, such as href, rel, and type.
j. Link a style sheet, the value of the href attribute should be the “URL” of the linked document, the value of the rel attribute should be “stylesheet” and the value of the type attribute should be “text/css”.
EXTERNAL.CSS:
body{ background-color: gray;}
p { color: blue; }
h3{ color: white; }
EXTERNAL.HTML:
<html>
<head>
<link rel="stylesheet" type="text/css" href="EXTERNAL.css" /><!—Link tag for External CSS-->
</head>
<body>
<h3> A White Header </h3>
<p> This paragraph has a blue font.
The background color of this page is gray because
we changed it with CSS! </p>
</body>
</html>
INTERNAL.HTML:
<html>
<head>
<style> <!—Style tag for Internal CSS-->
body { background-color: blue; }
p { color: white; }
</style>
</head>
<body>
<h2>Internal CSS</h2>
<p>This page uses internal CSS. Using the style tag we are able to modify
the appearance of HTML elements.</p>
</body>
</html>
INLINE.HTML:
<html>
<head>
</head>
<body>
<h2>InLINE CSS</h2>
<p style="color:sienna;margin-left:20px"><!—Style Attribute(INLINE)-->
This page uses INLINE CSS. Using the style ATTRIBUTE we are able to modify
the appearance of HTML elements.
</p>
</body>
</html>

9. i. Discuss JavaScript objects in detail. Write a JavaScript program to delete the rollno property from the following object. Also print the object before and after deleting the property.
Sample Object:var student = {name:”Santhosh Ravy” class:”VI”,rollno:29};(NOV/DEC 2015)

· An object is a set of properties
· A property consists of a unique (within an object) name with an associated value
· The type of a property depends on the type of its value and can vary dynamically
· Object properties do not have data types
 Ex: Single property prop of an object o.

		[image:]
· There are no classes in JavaScript
· Object constructors defined to create objects and automatically define properties for the objects created
· Instead, properties and methods can be created and deleted dynamically
		[image:][image:]
· Objects are created using new expression
· First line creates a variable named o1 initialize its value of type object by calling built-in constructor Object()
	[image:]
· Second line adds a property named testing to the o1 object and assigns a string value to this property
Enumerating Properties
· To know which property an object has at any given time
· Special form of for statement used to iterate through all properties of an object:
[image:]
[image:]

Program:

<!DOCTYPE html>
<html>
<body>

<button onclick="myFunction()">Click</button>

<p id="demo"></p>
<p id="demo1"></p>
<script>
function myFunction() {
var txt = "";
var student = {name:"Santhosh Ravy", class:"VI", rollno:29};
var x;
for (x in student) {
 txt += student[x] + " ";
}
document.getElementById("demo").innerHTML ="Before deleting:"+" "+txt;
delete student.rollno;
txt = "";
for (x in student) {
 txt += student[x] + " ";
}
document.getElementById("demo1").innerHTML = "after deletion:"+" "+txt;
}
</script>

</body>
</html>

ii. Write a Javascript program to search a date (MM/DD/YYYY) within a string.
(NOV/DEC 2015)
<html>
<body>

<p>Checks whether the String contains date </p>

<button onclick="myFunction()">Try it</button>
<p>todays date is 30/05/2016(dd/mm/yyyy)</p>
<p id="demo"></p>
<p>todays date is 3/05/2016(dd/mm/yyyy)</p>
<p id="demo1"></p>
<script>
function myFunction() {
 var dateTime = /(\d\d)[\/\-](\d\d)[\/\-](\d\d\d\d)/;
document.getElementById("demo").innerHTML =dateTime.test("todays date is 30/05/2016");
document.getElementById("demo1").innerHTML =dateTime.test("todays date is 3/05/2016");
}
</script>

</body>
</html>

10. Apply CSS to a webpage with the following requirements (NOV/DEC 2015)
1. Paint the background gray
2. Add a background image of a submarine
3. Paint the sidebar Yellow
4. Set a color to the span elements(Different color for each class)
5. Set the artist h1 to be only uppercase
6. Set the title h2 to be uppercase-first letter
7. Set a line spacing between the lines
8. Set a letter spacing between the letters in each span of type instruction

<html>
<head>
<title>Untitled Document</title>
<style>
body
{	
line-height:200%;
background-color:grey;
background-image: url(submarine.jpg) ;
background-repeat:no-repeat;
}
h1
{
text-transform:uppercase;	
}
h2
{
text-transform:capitalize;	
}
.s1
{
color:red;
letter-spacing:20;	
}
.s2
{
color:blue;	
letter-spacing:70;
}
#sidebar
{
background-color:yellow;	
}
</style>
</head>

<body>
<div id="sidebar">
 Bibliography
 Discography
 Contact Us
 </div>
<h1>main heading</h1>
<h2>sub heading</h2>
hello

how are you
</body>
</html>

UNIT II
JAVA
PART- A (2 Marks)

1. Define object?
Defining variables of a class data type is known as class instantiation and such variables are called objects. Object is a instance of a class.
2. Define class?
Object oriented programming constructs support a data type called class. A class encloses both the data and functions. The enclosed data and function in a class are called data member and member function respectively.
3. Define encapsulation?
It is a mechanism that associates the code and data it manipulates into a single unit. In C++, this is supported by a construct called class. An instance of a class is known as an object, which represents a real world entity.
4. Define data abstraction?
The technique of creating new data type that are well suited to an application to be programmed is known as data abstraction. The class is a construct in C++ for creating user defined data types called ADTS.
5. Define message passing in oops?
It is a process of invoking an operation of object. In response to a message, the corresponding method is executed in the object.
6. List out all object oriented concepts?
List of object oriented concepts are Encapsulation, data abstraction, Inheritance, polymorphism, message passing, extensibility, persistence, delegation, generality
7. What do you mean by inheritance?
It allows the extension and reuse of existing code without having to rewrite the code from scratch. Inheritance involves the creation of new classes (derived classes) from the existing ones(base classes), thus enabling the creation of a hierarchy of classes that simulate the class and sub class concept of the real world.
8. Define polymorphism?
It allows a single name/operator to be associated with different operation depending on the type of data passed to it.
9. List out all access specifiers?
The list of access specifiers are private, public, and protected.
Private:
Private members can be accessed by only members of the same class and can not be accessed by non members.
Public:
 public members can be accessible to both members and non members.
Protected : it can be accessed by members of subclasses and own members and can not be accessed by non members
10. What is static in java.
A static data member is defined with a static keyword preceding it in the class defintion. It must have a definition outside the body of the class. It is shared between all the objects of a class.
11. How can you achieve Multiple inheritance (MI) in java?
Java’s interface mechanism can be used to implement inheritance, with one important difference from c++ way of doing MI: the inherited interface must be abstract. This obviates the need to choose between different implementations as with interfaces there are no implementations.
12. What is a string buffer class and how does it differs from string class.
In contrast to the String class which implements immutable character strings, the StringBuffer class implements mutable character strings. Not only can the character string in a string buffer gets changed, but the buffer’s capacity can also change dynamically. The capacity of a String Buffer is the maximum number of characters that a string buffer can accommodate, before its size is automatically augmented	
String Class:
String str = new String ("Stanford ");
Str+="Lost!!";
StringBuffer Class:
StringBuffer str = new StringBuffer ("Stanford ");
str.append("Lost!!");
13. What are the difference between the abstract class and interface?
An interface cannot implement any methods, whereas an abstract class can.
A class can implement many interfaces but can have only one super class.
An interface is not part of the class hierarchy. Unrelated classes can implement the same interface
14. Define Packages.
A package is a grouping of related types providing access protection and name space management.
15. How is an interface? How it is used in java?
A class that implements an interface adheres to the protocol defined by that interface. To declare a class that implements an interface, include an implements clause in the class declaration. A class can implement more than one interface (the Java platform supports multiple inheritance for interfaces), so the implements keyword is followed by a comma-separated list of the interfaces implemented by the class
16. What is an abstract method?
An abstract method is a method whose implementation is deferred to a sub class.
17. Explain the significance of try-catch blocks?
Whenever the exception occurs in Java, we need a way to tell the JVM what code to execute. To do this, we use the try and catch keywords. The try is used to define a block of code in which exceptions may occur. One or more catch clauses match a specific exception to a block of code that handles it.

[image: Try-Catch-Finally]
18. What is the use of finally block?
The finally block encloses code that is always executed at some point after the try block, whether an exception was thrown or not. This is right place to close files, release your network sockets, connections, and perform any other cleanup your code requires.
19. How to create custom exceptions?
By extending the Exception class or one of its subclasses.
Example:
Class MyException extends Exception
 {
 public MyException() { super(); }
 public MyException(String s) { super(s); }
 }
20. How Threads are created in Java?
Threads are created in two ways. They are by extending the Thread class and by implementing Runnable interface.
21. What is multithreaded programming?
Multithreaded program contains 2 or more parts that can run concurrently. Each part of such a program is called a thread, and each thread defines a separate path of execution.
22. What is thread priority?
Java assigns to each thread a priority that determines how that thread should be treated with respect to the others. Thread priorities are integers that specify the relative priority of one thread to another.
23. What is the difference between the Reader/Writer class hierarchy and the
InputStream/OutputStream class hierarchy?
The Reader/Writer class hierarchy is character-oriented, and the InputStream/OutputStream class hierarchy is byte-oriented.
24. Describe life cycle of thread?
		A thread is a execution in a program. The life cycle of a thread include:
· Newborn state
· Runnable state
· Running state
· Blocked state
· Dead state
25. Write a java code to check if the given string is palindrome or not. (NOV/DEC 2015)
class Palindrome
{
 public static void main(String args[])
 {
 String original, reverse = "";
 Scanner in = new Scanner(System.in);

 System.out.println("Enter a string to check if it is a palindrome");
 original = in.nextLine();

 int length = original.length();

 for (int i = length - 1; i >= 0; i--)
 reverse = reverse + original.charAt(i);

 if (original.equals(reverse))
 System.out.println("Entered string is a palindrome.");
 else
 System.out.println("Entered string is not a palindrome.");

 }
}	
26. Write a multithreaded program that joins two threads. (NOV/DEC 2015)
public class MyThread extends Thread
{
public void run()
 {
 System.out.println("r1 ");
 try{
 Thread.sleep(500);
 }catch(InterruptedException ie){}

 System.out.println("r2 ");
 }
public static void main(String[] args)
{
MyThread t1=new MyThread();
MyThread t2=new MyThread();
t1.start();
 try{
 t1.join();		//Waiting for t1 to finish
}
catch(InterruptedException ie){}
t2.start();
}
}

PART B (16 MARKS)
1. Discuss the various types of inheritance supported by java.
INHERITANCE:
Inheritance is the concept of deriving a class from an already existing class.
Types of inheritance:
· Single inheritance
· Multiple inheritance(not possible in java but can be implemented by using interface)
· Multi-level inheritance
· Hybrid inheritance
· Hierarchal inheritance
Program implementing inheritance with using super and this keywords.
SUPER, THIS, SUPER (), THIS () (or) INHERITANCE
· The keyword super refers to the base class
· super()
· invokes the base class constructor
· base class constructors are automatically invoked
· super() must be the first statement in a constructor

· super.method()
· invokes the specified method in the base class
· super.variable
· to access the specified variable in the base class

· The keyword this refers to the current class instance. It is a reference to the object from which the method was invoked.

- this()
· this() must be the first statement in a constructor
· To call a constructor from another overloaded constructor in the same class
· this.method()
· invokes the specified method in the same class
· this.variable
· to access the specified variable in the same class

Multilevel Inheritance:

Pi_value.java:

package Inheritance;

public class Pi_value
{
	double pi;
Pi_value()
{
	pi=3.14;
}
void value()
{
	System.out.println("The value of pi"+pi);
}
}

Circle.java:

package Inheritance;

public class Circle extends Pi_value
{
int r;
public Circle()
{
	super();
	System.out.println("Multilevel Inheritance");
}
public Circle(int r)
{
	this();
	this.r=r;
}
void areaCircle()
{
	double area_c;
	area_c=pi*r*r;
	System.out.println("The value of pi is"+super.pi);
	System.out.println("Area of Circle is"+area_c);
}
}

Semicircle.java:

package Inheritance;

public class Semicircle extends Circle
{
	public Semicircle(int r)
	{
		super(r);
	}
	void areasemiCircle()
	{
		double area_s;
		area_s=0.5*pi*r*r;
		super.areaCircle();
		System.out.println("Area of SemiCircle is"+area_s);
		
	}

}

Main.java:

package Inheritance;

public class Main
{
	public static void main(String[] args)
	{
	Semicircle s1=new Semicircle(5);
	s1.areasemiCircle();
	}
	
}

Output:

Multilevel Inheritance
The value of pi is3.14
Area of Circle is78.5
Area of SemiCircle is39.25

Hierarical Inheritance:
Pi_value.java:
package Inheritance_H;

public class Pi_value
{
	double pi;
Pi_value()
{
	pi=3.14;
}
void value()
{
	System.out.println("The value of pi"+pi);
}
}

Circle.java:
package Inheritance_H;

public class Circle extends Pi_value
{
int r;

public Circle(int r)
{
	this.r=r;
}
void areaCircle()
{
	double area_c;
	area_c=pi*r*r;
	System.out.println("Area of Circle is"+area_c);
}
}

Semicircle.java:
package Inheritance_H;

public class Semicircle extends Pi_value
{
	int r;
	public Semicircle(int r)
	{
		this.r=r;
	}
	void areasemiCircle()
	{
		double area_s;
		area_s=0.5*pi*r*r;
		System.out.println("Area of SemiCircle is"+area_s);
		
	}

}

Main.java:
package Inheritance_H;

public class Main
{

	/**
	 * @param args
	 */
	public static void main(String[] args)
	{
	Circle c1=new Circle(5);
	c1.areaCircle();	
	Semicircle s1=new Semicircle(5);
	s1.areasemiCircle();
	}
	

}

Output:
Area of Circle is78.5
Area of SemiCircle is39.25

2. Discuss the different levels of access protection available in java also explain java packages.
ACCESS SPECIFIERS AND PACKAGES:
Java allows to control access to classes, methods, and members so-called access specifiers.
Java offers four access specifiers, listed below in decreasing accessibility:
1. public
1. protected
1. default (no specifier)
1. private
	VISIBILITY
MODE
	SAME PACKAGE
	OUTSIDE PACKAGE

	
	SUB CLASS
	NON-SUB
	SUB CLASS
	NON-SUB

	PRIVATE
	No
	No
	No
	No

	PROTECTED
	Yes
	Yes
	Yes
	No

	PUBLIC
	Yes
	Yes
	Yes
	Yes

	DEFAULT
	Yes
	Yes
	No
	No

Packages
Package = directory. Java classes can be grouped together in packages. A package name is the same as the directory (folder) name which contains the .java files.
Package declaration syntax
The statement order is as follows. Comments can go anywhere.
1. Package statment .
1. Imports .
1. Class or interface definitions.
Imports:
1. import package_name.Classname;
	Imports the class of the corresponding package. It will not import any instace members or static members directly.
import package_name.Classname.instance_member;//Error
2. import package_name.*;
	Imports all the classes of the package.

3. import static package_name.class_name.static_member;
	Imports only the static members of the class in that package.

Note: static import imports only the static members of the class.It will not import any classes or instance members.
A.java:
package Access1;

public class A
{
	private 	int pri;
		 	int def;//DEFAULT SPECIFIER
	protected 	int pro;
	public 	int pub;
	
	static public int s_var=10; //DEFAULT SPECIFIER

	void display()//DEFAULT SPECIFIER
	{
		pri=10;
		def=20;		// all modifier can be accessed
		pro=30;
		pub=40;
	}
	static void s_meth()//DEFAULT SPECIFIER
	{
		System.out.println("The Value of Static VAriable is" +s_var);
	}
	
}

B.java
package Access1;

public class B extends A
{
	void display()
	{
	pri=10;		// private members cannot be accessed

	def=20;		// can be accessed
	pro=30;		// can be accessed
	pub=40;		// can be accessed
	
	s_var=20;		// can be accessed
	}
}

C.java:
package Access1;

public class C
{
	
	void display()
	{
	A v=new A(); // Non Subclass create the instance to access the member
	
	v.pri=10;	 // private members cannot be accessed

	v.def=20;	 // can be accessed
	v.pro=30;	 // can be accessed
	v.pub=40; // can be accessed
	
	v.s_var=30;	 // can be accessed
	}
		
}

D.java:
package Access2;

import Access1.A; // Imports class A to make visible to class D

public class D extends A
{
	
 void display()
 {
 pri=10;	 // private & default members cannot be accessed
 def=20;

 pro=30;		// can be accessed
 pub=40; // can be accessed

 s_var=50;	// can be accessed
 }
	
}

E.java:
package Access2;
import Access1.*;// Imports all classes of Access1
import static Access1.A.s_var; //Imports static members
public class E
{

	void display()
	{

	A v=new A();// Non Subclass create the instance to access the member

	v.pri=10; // private, default & protected members cannot be accessed
	v.def=20;
	v.pro=30;

	
	
	v.pub=40; // can be accessed
	s_var=60;	//public and static import member
	
	}

}

3. What does it mean that a method or class is abstract? Can we make an instance of an abstract class? Explain it with example
ABSTRACT CLASS:
	
An abstract class is a class that is declared abstract—it may or may not include abstract methods. Abstract classes cannot be instantiated, but they can be subclassed.
An abstract method is a method that is declared without an implementation (without braces, and followed by a semicolon), like this:
	abstract void moveTo(double deltaX, double deltaY);

	Rules:
a. Abstract class must be inherited.
b. Abstract methods must be declared, not defined.
c. Abstract methods must be overridden in the subclass.
	

Shape.java:

package Dyn_Poly;

abstract public class Shape //Abstract Class
{
abstract public void area();//Abstract method
}

Circle.java:

package Dyn_Poly;

public class Circle extends Shape//Inherits Shape properties
{
public int rad;
Circle(int r)
{
	rad=r;
}
public void area()//Overridden Method
{
	double a_c=3.14*rad*rad;
	System.out.println("Area of Circle is"+a_c);
}
}

Rectangle.java:

package Dyn_Poly;

public class Rectangle extends Shape//Inherits Shape properties
{
	public int len,bre;
	public Rectangle(int l,int b)
	{
	len=l;
	bre=b;
	}
	public void area()//Overridden Method
	{
		int a_r=len*bre;
		System.out.println("Area of Circle is"+a_r);
	}
}

Main1.java:

package Dyn_Poly;

public class Main1
{
	public static void main(String args[])
	{
		Circle c=new Circle(10);
		Rectangle r=new Rectangle(10, 20);
		Shape s;//s-Object Variable
		s=c;//Points to Circle's Object
		s.area();//Calls the Circle's area() at runtime
		s=r;//Points to Rectangle's Object
		s.area();//Calls the Rectangle's area() at runtime
	}
}

4. Explain with examples of various types of constructors. Why constructor does not have return
types in java? State the use of finalize () method. Explain in with proper example.

CONSTRUCTORS:
Constructors are used to initialize memory for the objects.
When an object is created corresponding constructor is called.
Constructors initialize memory to the instance variables only.
Types of Constructor:
Copy constructor
Copy constructor is used to copy the value of one object into another. When one object is copied 	to another using initialization, they are copied by executing the copy constructor.
	The copy constructor contains the object as one of the passing argument.
Default constructor
 A constructor without any argument is called default constructor.
	Ex
	Class complex
	{
 	Public: void complex();
	};
Parameterized constructor
A constructor with one or more than one argument is called parameterized constructor.
Ex
Class complex
{
Public:
Complex complex(int real, intimag);
};

Example:
	package ME;
public class A {
	public int i;
	public A()
	{
		System.out.println("This is A's default Constructor");
	}
	public A(int i)
	{
		this();
		//super();
		System.out.println("This is A's Parametrized Constructor");
		this.i=i;
	}
}

package ME;

public class B extends A {
	
	public int i;

	public B(int b,int i)
	{
		super(b);
		//this();
		this.i=i;
		System.out.println("B' s Constructor");
	}
	public B()
	{
		System.out.println("B' s Constructor");
		
	}
	
	void display()
	{
		System.out.println("The value of the i is="+i);
		System.out.println("The value of the super.i is="+super.i);
	}
	
	public static void main(String a[])
	{
		B f=new B(10,20);
		f.display();
	}
}
This is A's default Constructor
This is A's Parametrized Constructor
B's Constructor
The value of the i is=20
The value of the super.i is=10

finalize ():
protected void finalize() throws Throwable
 {
 }
· Every class inherits the finalize() method from java.lang.Object
· The method is called by the garbage collector when it determines no more references to the object exist
· The Object finalize method performs no actions but it may be overridden by any class
· Normally it should be overridden to clean-up non-Java resources ie closing a file
· If overriding finalize () it is good programming practice to use a try-catch-finally statement and to always call super .finalize() (JPL pg 47-48). This is a safety measure to ensure you do not inadvertently miss closing a resource used by the objects calling class
protected void finalize() throws Throwable
{
try
{
		close(); // close open files
 	 }
 finally
	 {
		super.finalize();
 	 }
}
· Any exception thrown by finalize() during garbage collection halts the finalization but is otherwise ignored
· Finalize() is never run more than once on any object

5. Give an example where interface can be used to support multiple inheritances. Develop a standalone java program for the example.
INTERFACES:
An interface is a collection of abstract methods. A class implements an interface, thereby inheriting the abstract methods of the interface.
An interface is not a class. Writing an interface is similar to writing a class, but they are two different concepts. A class describes the attributes and behaviors of an object. An interface contains behaviors that a class implements.
All the methods of the interface need to be defined in the class WHICH IMPLEMENTS THE INTERFACE.
Shape.java:
package UNIT3;
public interface Shape
{
	public String baseclass="shape";
	public void Draw();
		
}
Circle.java:
package UNIT3;
public class Circle implements Shape
{
	
	public void Draw()
	{
	System.out.println("Drawing Circle here");
	}
	
}
I_Test.java:
package UNIT3;
public class I_Test
{
	public static void main(String[] args)
	{
	Shape cs=new Circle();//Or Circle cs=new Circle();
	cs.Draw();
	}
}

A class can implement more than one interface
Stack.java:
interface Stack
{
public void POP();
public void PUSH(int x);
}
Queue.java:
interface Queue
{
public void ENQUEUE(int x);
public void DEQUEUE();
}
List.java:
class list implements stack, queue
{
public void POP()
{
System.out.println("POP MethodDefn");
}
public void PUSH(int x)
{
System.out.println("PUSH MethodDefn");
}
public void ENQUEUE(int x)
{ System.out.println("ENQUEUE MethodDefn"); }
public void DEQUEUE()
{ System.out.println("DEQUEUE MethodDefn"); }
}
Interface can be inherited another interface
- Also implement the methods from parent interface if you are imlement sub interface
interface stack
{
public void POP();
public void PUSH(int x);
}
interface queue extends stack
{
public void ENQUEUE(int x);
public void DEQUEUE();
}
class list implements stack, queue
{
public void POP()
{ System.out.println("POP MethodDefn"); }
public void PUSH(int x)
{ System.out.println("PUSH MethodDefn");}
public void ENQUEUE(int x)
{ System.out.println("ENQUEUE MethodDefn"); }
public void DEQUEUE()
{
System.out.println("DEQUEUE MethodDefn"); }
}
6. How to declare and initialize a string in java and also explain the different string handling functions with suitable examples.
STRINGS:
 String is an array of characters. In java string is a packaged class. Its an user defined datatype.
 DECLARATION:
 Strings can be created by new keyword and a constructor.
 Syntax:
 Char[] variable_name=new Char[index];
 String variable_name=new String();
 STRING INITIALIZATION:
 Char[] a={‘c’,’h’,’a’,’n’,’d’,’r’,’u’};
 String name=”Chandru”;
 SOME STRING FUNCTIONS:
· String substring(int beginindex)
 Gives the sub string starting with index beginindex
· String substring(int beginindex , int endindex)
 Gives the substring starting with beginindex(inclusive) and ends with endindex (exclusive)
· String toLowerCase()
 Returns the given string in lowercase
· String toUpperCase()
 Returns the given string in uppercase
 String trim()
 Trims the given string
 Length()
 Returns the length of the string
 Charat(int index)
 Returns the char at the given index

Program:-
package string;

public class Stri {
public static void main(String a1[]){
	String a=new String();
	String b=new String();
	String c=new String();
	int i;
	char s;
	a="hello";
	b="world";
	c=a.toUpperCase();
	System.out.println(c);
	c=a.toLowerCase();
	System.out.println(c);
	c=b.concat(a);
	System.out.println(c);
	c=a.substring(2);
	System.out.println(c);
	c=a.substring(1,3);
	System.out.println(c);
	i=a.length();
	System.out.println(i);
	s=a.charAt(3);
	System.out.println(s);	
	
}
}

Output:
HELLO
hello
worldhello
llo
el
5
l

7. i. What is meant by stream? What are the types of streams and classes? Explain in detail.
Java I/O (Input and Output) is used to process the input and produce the output based on the input.
Java uses the concept of stream to make I/O operation fast. The java.io package contains all the classes required for input and output operations.
A stream is a sequence of data.In Java a stream is composed of bytes.
 In java, 3 streams are created for us automatically. All these streams are attached with console.
1) System.out: standard output stream
2) System.in: standard input stream
3) System.err: standard error stream
Java performs I/O through Streams. A Stream is linked to a physical layer by java I/O system to make input and output operation in java. In general, a stream means continuous flow of data. Streams are clean way to deal with input/output without having every part of your code understand the physical.
Java encapsulates Stream under java.io package. Java defines two types of streams. They are,
1. Byte Stream : It provides a convenient means for handling input and output of byte.
2. Character Stream : It provides a convenient means for handling input and output of characters. Character stream uses Unicode and therefore can be internationalized.
Byte stream:
Byte stream is defined by using two abstract class at the top of hierarchy, they are InputStream and OutputStream.
[image: byte stream classification]
These two abstract classes have several concrete classes that handle various devices such as disk files, network connection etc.
	Stream class
	Description

	BufferedInputStream
	Used for Buffered Input Stream.

	BufferedOutputStream
	Used for Buffered Output Stream.

	DataInputStream
	Contains method for reading java standard datatype

	DataOutputStream
	An output stream that contain method for writing java standard data type

	FileInputStream
	Input stream that reads from a file

	FileOutputStream
	Output stream that write to a file.

	InputStream
	Abstract class that describe stream input.

	OutputStream
	Abstract class that describe stream output.

	PrintStream
	Output Stream that contain print() and println() method

These classes define several key methods. Two most important are
1. read() : reads byte of data.
2. write() : Writes byte of data.

Character stream:
Character stream is also defined by using two abstract class at the top of hierarchy, they are Reader and Writer.
[image: character stream classification]
These two abstract classes have several concrete classes that handle unicode character.

Some important Charcter stream classes.
	Stream class
	Description

	BufferedReader
	Handles buffered input stream.

	BufferedWriter
	Handles buffered output stream.

	FileReader
	Input stream that reads from file.

	FileWriter
	Output stream that writes to file.

	InputStreamReader
	Input stream that translate byte to character

	OutputStreamReader
	Output stream that translate character to byte.

	PrintWriter
	Output Stream that contain print() and println() method.

	Reader
	Abstract class that define character stream input

	Writer
	Abstract class that define character stream output

Read Console Input:
We use the object of BufferedReader class to take inputs from the keyboard.
[image: BufferedReader class explanation]
ii List and discuss the role of various buffer classes used in java programming.
The inheritance model:
The class named ByteBuffer extends the abstract class named Buffer. Because Buffer is abstract, it is not possible to create an instance of Buffer. Rather, the capabilities of Buffer become available when you create an instance of one of the subclasses of Buffer. The Sun documentation lists the following known subclasses of Buffer:
· ByteBuffer
· CharBuffer
· DoubleBuffer
· FloatBuffer
· IntBuffer
· LongBuffer
· ShortBuffer
As you can see from the names of the subclasses, there is one subclass of the Buffer class for each non-boolean primitive type. I will use the ByteBuffer subclass in this lesson to illustrate the features inherited from the Buffer class.

StringBuffer Methods:
Here is the list of important methods supported by StringBuffer class:

1. public StringBuffer append(String s)
Updates the value of the object that invoked the method. The method takes boolean, char, int, long, Strings etc.
2. public StringBuffer reverse()
The method reverses the value of the StringBuffer object that invoked the method.

8. Explain creating a thread, extending the thread class and an example of using the thread 	class.
THREADS:
· Threads are light weight processes
· It is handling the process

CONTROLLING THE MAIN THREAD (SYSTEM THREAD):

Example1:

public class Step1
{
public static void main(String[] arg)
{
	try
{
		for(int i=5;i>0;i--)
		{
			System.out.println("Main Thread"+i);
			Thread.sleep(2000);
		}
	}
	catch(InterruptedException e)
{
		System.out.println("Main interrupted");
	}
	System.out.println("Exiting Main Thread");
}
}

Example2:

class CurrentThreadDemo
{
	public static void main(String args[])
	{
		Thread t = Thread.currentThread();

		System.out.println("Current thread: " + t);

		t.setName("My Thread");
		System.out.println("After name change: " + t);

		try
		{
			for (int n = 5; n > 0; n--)
			{
				System.out.println(n);
				Thread.sleep(1000);
			}
		}
		catch (InterruptedException e)
		{
			System.out.println("Main thread interrupted");
		}
	}
}

THREAD CAN BE IMPLEMENTED IN TWO WAYS

1) Extending Thread Class
2) Implementing Runnable Interface

EXTENDING THREAD CLASS:

Example:

public class ThreadSample extends Thread
{

	public void run()
	{
		try
		{
			for (int i = 5; i > 0; i--)
			{
				System.out.println("Child Thread" + i);
				Thread.sleep(1000);
			}
		}
		catch (InterruptedException e)
		{
			System.out.println("Child interrupted");
		}
	System.out.println("Exiting Child Thread");
	}
}

public class MainThread
{
	public static void main(String[] arg)
	{
		ThreadSample d = new ThreadSample();
		d.start();
		try
		{
			for (int i = 5; i > 0; i--)
			{
				System.out.println("Main Thread" + i);
				Thread.sleep(5000);
			}
		}
		catch (InterruptedException e)
		{
			System.out.println("Main interrupted");
		}
		System.out.println("Exiting Main Thread");
	}
}

IMPLEMENTING RUNNABLE INTERFACE

public class ThreadSample implements Runnable
{

	public void run()
	{
		try
		{
			for (int i = 5; i > 0; i--)
			{
				System.out.println("Child Thread" + i);
				Thread.sleep(1000);
			}
		}
		catch (InterruptedException e)
		{
			System.out.println("Child interrupted");
		}
		System.out.println("Exiting Child Thread");
	}
}

public class MainThread
{
	public static void main(String[] arg)
	{
		ThreadSample d = new ThreadSample();
		Thread s = new Thread(d);
		s.start();
		try
		{
			for (int i = 5; i > 0; i--)
			{
				System.out.println("Main Thread" + i);
				Thread.sleep(5000);
			}
		}
		catch (InterruptedException e)
		{
			System.out.println("Main interrupted");
		}
		System.out.println("Exiting Main Thread");
	}
}

9. Explain how exception handling mechanism has been implemented in Java. Also explain various types of checked and unchecked exception that may arise in java with suitable examples. (NOV/DEC 2015).
EXCEPTION HANDLING:-
	All exceptions are instances of a class extended from Throwableclass or its subclass.

EXCEPTION HIERARCHY:-

[image:]
[image:]

[image:]

TYPES OF EXCEPTIONS:-
	Checked exceptions – inability to acquire system resources (such as insufficient memory, file does not exist)
	Unchecked exceptions – exceptions that occur because of the user entering bad data, or failing to enter data at all.

GENERAL SYNTAX:
try{
//statements – one of which is capable of throwing an exception
}
catch(ExceptionTypeNameobjName)
{
//one or more statements to execute if this exception occurs
}
finally
{
//statements to be executed whether or not exception occurs
}

EXAMPLE:-
ArithmeticException:
publicclassExcepTest{
		publicstaticvoid main(String args[]) {
		int d, a;
		try
		{
		d = 0;
		a = 42 / d;
		System.out.println(a);
		System.out.println("This will not be printed.");
		}
		catch (ArithmeticException e) {
		System.out.println("Division by zero.");
		}
		System.out.println("After catch statement.");
		}
	}
OUTPUT:-
Division by zero.
After catch statement.

ArrayIndexOutOfBoundsException:

publicclassExcepTest{

publicstaticvoid main(String args[]){
try
 {
	int size=3;
	int a[] = newint[size];
	if(size>=3)
		thrownewArrayIndexOutOfBoundsException();
	else
	System.out.println("Access element three :" + a[3]);
 }
catch(ArrayIndexOutOfBoundsException e){
System.out.println("Exception thrown :" + e);
 }
System.out.println("Out of the block");
 }
}

10. Write a program that runs 5 threads, each thread randomizes a number between 1 and 10. The main thread waits for all the others to finish, calculates the sum of the numbers which were randomized and prints that sum. You will need to implement a Runnable class that randomizes a number and store it in a member field. When all the threads have done, your main program can go over all the objects and check the stored values in each object. (NOV/DEC 2015)

import java.util.Random;

public class main implements Runnable
{
 int num1,num2,num3,num4,num5;
 Random r=new Random();
main()
{
Thread thNum1 = new Thread()
 {
 //run method from runnable interface
 public void run()
 {
 num1 = r.nextInt(11);
 System.out.println("Thread 1 generates:"+num1);
 }
 };
 thNum1.start();
Thread thNum2 = new Thread()
 {
 //run method from runnable interface
 public void run()
 {
 num2 = r.nextInt(11);
 System.out.println("Thread 2 generates:"+num2);
 }
 };
 thNum2.start();
Thread thNum3 = new Thread()
 {
 //run method from runnable interface
 public void run()
 {
 num3 = r.nextInt(11);
 System.out.println("Thread 3 generates:"+num3);
 }
 };
 thNum3.start();

Thread thNum4 = new Thread()
 {
 //run method from runnable interface
 public void run()
 {
 num4 = r.nextInt(11);
 System.out.println("Thread 4 generates:"+num4);
 }
 };
 thNum4.start();

Thread thNum5 = new Thread()
 {
 //run method from runnable interface
 public void run()
 {
 num5 = r.nextInt(11);
 System.out.println("Thread 5 generates:"+num5);
 }
 };
 thNum5.start();

}@Override
 public void run()
 {
 int sum = num1 + num2+num3+num4+num5;
 System.out.println("Sum calculated by main Thread......");
 System.out.println("The sum of " + num1 + " +" + num2 +"+"+ num3 + " +" + num4 +"+"+num5+ " =" + sum);

 }
public static void main(String[]args)
{
main m=new main();
Thread t=new Thread(m);
t.start();
}}

UNIT III
JDBC
PART- A (2 Marks)

1. What is JDBC?
JDBC stands for Java Database Connectivity, which is a standard Java API for database-independent connectivity between the Java programming language and a wide range of databases.
2. What are the common JDBC API components?
JDBC API consists of following interfaces and classes: DriverManager, Driver, Connection, Statement, ResultSet, SQLException.
3. What is a JDBC DriverManager?
JDBC DriverManager is a class that manages a list of database drivers. It matches connection requests from the java application with the proper database driver using communication subprotocol.
4. What is a connection?
Connection interface consists of methods for contacting a database. The connection object represents communication context.
5. What is a statement?
Statement encapsulates an SQL statement which is passed to the database to be parsed, compiled, planned and executed.
6. What is a ResultSet?
These objects hold data retrieved from a database after you execute an SQL query using Statement objects. It acts as an iterator to allow you to move through its data. The java.sql.ResultSet interface represents the result set of a database query.
7. What are types of ResultSet?
 There are three constants which when defined in result set can move cursor in resultset backward, forward and
 also in a particular row.
· ResultSet.TYPE_FORWARD_ONLY: The cursor can only move forward in the result set.
· ResultSet.TYPE_SCROLL_INSENSITIVE: The cursor can scroll forwards and backwards, and the result set is not sensitive to changes made by others to the database that occur after the result set was created.
· ResultSet.TYPE_SCROLL_SENSITIVE: The cursor can scroll forwards and backwards, and the result set is sensitive to changes made by others to the database that occur after the result set was created.
8. What are the basic steps to create a JDBC application?
· Following are the basic steps to create a JDBC application:
· Import packages containing the JDBC classes needed for database programming.
· Register the JDBC driver, so that you can open a communications channel with the database.
· Open a connection using the DriverManager.getConnection () method.
· Execute a query using an object of type Statement.
· Extract data from result set using the appropriate ResultSet.getXXX () method.
· Clean up the environment by closing all database resources relying on the JVM's garbage collection.
9. What are the standard isolation levels defined by JDBC?
· The standard isolation levels are:
· TRANSACTION_NONE
· TRANSACTION_READ_COMMITTED
· TRANSACTION_READ_UNCOMMITTED
· TRANSACTION_REPEATABLE_READ
· TRANSACTION_SERIALIZABLE
10. What does setAutoCommit do?
· setAutoCommit() invoke the commit state query to the database. To perform batch updation we use the setAutoCommit() which enable us to execute more than one statement together, which in result minimize the database call and send all statement in one batch.
· setAutoCommit() allowed us to commit the transaction commit state manually the default values of the setAutoCommit() is true.
11. What are types of JDBC drivers?
There are four types of drivers defined by JDBC as follows:
· JDBC/ODBC: These require an ODBC (Open Database Connectivity) driver for the database to be installed. It is used for local connection.
· Native API (partly-Java driver): This type of driver uses a database API to interact with the database. It also provides no host redirection.
· Network Protocol Driver: It makes use of a middle-tier between the calling program and the database. The client driver communicates with the net server using a database-independent protocol and the net server translates this protocol into database calls.
· Native Protocol Drive: This has a same configuration as a type 3 driver but uses a wire protocol specific to a particular vendor and hence can access only that vendor's database.
12. How can you load the drivers?
· It is very simple and involves just one line of code to load the driver or drivers we want to use.
· For example, We want to use the JDBC-ODBC Bridge driver, the following code will load it:
· Class.forName(”sun.jdbc.odbc.JdbcOdbcDriver”);
· Driver documentation will give you the class name to use. For instance, if the class name is jdbc.DriverHELLO, you would load the driver with the following line of code:
· Class.forName(”jdbc.DriverHELLO”);
13. What Is a Socket?
 A socket is one end-point of a two-way communication link between two programs running on the network. Socket classes are used to represent the connection between a client program and a server program. The java.net package provides two classes--Socket and ServerSocket--that implement the client side of the connection and the server side of the connection, respectively.
14. What is a JavaBean?
JavaBeans are reusable software components written in the Java programming language, designed to be manipulated visually by a software develpoment environment, like JBuilder or VisualAge for Java. They are similar to Microsoft’s ActiveX components, but designed to be platform-neutral, running anywhere there is a Java Virtual Machine (JVM).
15. What are some advantages and disadvantages of Java Sockets?
· Advantages of Java Sockets:
· Sockets are flexible and sufficient. Efficient socket based programming can be easily implemented for general communications.
· Sockets cause low network traffic. Unlike HTML forms and CGI scripts that generate and transfer whole web pages for each new request, Java applets can send only necessary updated information.
· Disadvantages of Java Sockets:
· Security restrictions are sometimes overbearing because a Java applet running in a Web browser is only able to establish connections to the machine where it came from, and to nowhere else on the network .
· Despite all of the useful and helpful Java features, Socket based communications allows only to send packets of raw data between applications. Both the client-side and server-side have to provide mechanisms to make the data useful in any way.
· Since the data formats and protocols remain application specific, the re-use of socket based implementations is limited.

16. What is the difference between URL instance and URLConnection instance?
A URL instance represents the location of a resource, and a URLConnection instance represents a link for accessing or communicating with the resource at the location.

17. When MalformedURLException and UnknownHostException throws?
 		When the specified URL is not connected then the URL throw MalformedURLException and If InetAddress’ methods getByName and getLocalHost are unable to resolve the host name they throw an UnknownHostException.
18. What is the difference between TCP and UDP?

	TCP
	UDP

	Connection oriented transport protocol
	Connection less protocol

	Sends data as a stream of bytes
	Datagram service

	Guarantee of delivery
	No guarantee of delivery.

19. What is RMI?
RMI stands for Remote Method Invocation. Traditional approaches to executing code on other machines across a network have been confusing as well as tedious and error-prone to implement. The nicest way to think about this problem is that some object happens to live on another machine, and that you can send a message to the remote object and get a result as if the object lived on your local machine.
20. Explain RMI Architecture?
RMI uses a layered architecture, each of the layers could be enhanced or replaced without affecting the rest of the system. The details of layers can be summarised as follows:
· Application Layer: The client and server program
· Stub & Skeleton Layer: Intercepts method calls made by the client/redirects these calls to a remote RMI service.
· Remote Reference Layer: Understands how to interpret and manage references made from clients to the remote service objects.
· Transport layer: Based on TCP/IP connections between machines in a network. It provides basic connectivity, as well as some firewall penetration strategies.
21. What are the services in RMI ?
 An RMI "service" could well be any Java method that can be invoked remotely. The other service is the JRMP RMI naming service which is a lookup service.
22. How many types of protocol implementations does RMI have?
 RMI has at least three protocol implementations: Java Remote Method Protocol(JRMP), Internet Inter ORB Protocol(IIOP), and Jini Extensible Remote Invocation(JERI). These are alternatives, not part of the same thing, All three are indeed layer 6 protocols for those who are still speaking OSI reference model.
23. What is Registry Service for RMI?
 The registration of the remote object must be done by the server in order for the client to look it up, is called the RMI Registry. In RMI, the client must contact an RMI registry, so that the server side application will be able to contact the client’s registry which points the client in the direction of the service. The client registers the service with the registry so that it is transparent to even for the server.
24. Explain how URL convention is used for accessing the registry.
 The class rebind () method of java.rmi.Naming class is used to specify the port number . For example if the registry is running on a port number 3271 of an application named HelloRMIRegistry the following is the usage of the URL to reference the remote object:
Naming.rebind ("//host:1111/RMIRegistry", obj);
 The URL stored on the web page needs to specify the non-default port number.When the server’s remote objects created by the server can include the URL from which the stub class can dynamically be downloaded to the client.

25. What are the various database connectivity supported in java. (NOV/DEC 2015)
There are four types of drivers defined by JDBC as follows:
· JDBC/ODBC: These require an ODBC (Open Database Connectivity) driver for the database to be installed. It is used for local connection.
· Native API (partly-Java driver): This type of driver uses a database API to interact with the database. It also provides no host redirection.
· Network Protocol Driver: It makes use of a middle-tier between the calling program and the database. The client driver communicates with the net server using a database-independent protocol and the net server translates this protocol into database calls.
· Native Protocol Drive: This has a same configuration as a type 3 driver but uses a wire protocol specific to a particular vendor and hence can access only that vendor's database.

26. Can the InetAddress class functionality to detect the IP address, be handled using URL Class? If yes . Explain?. (NOV/DEC 2015)
Yes, InetAddress class functionality is used to detect the IP address. In case of InetAddress the three methods getLocalHost, getByName, getByAllName can be used to create instances.

E.g.
InetAddress add1;
InetAddress add2;
try
{
add1 = InetAddress.getByName(“java.sun.com”);
add2 = InetAddress.getByName(“199.22.22.22″);
}
catch(UnknownHostException e)
{
}
PART- B(16 Marks)
1. What is a JavaBeans component? How will you use the JSP language elements for accessing Beans in your JSP pages?

A JavaBean is a specially constructed Java class written in the Java and coded according to the JavaBeans API specifications.
Following are the unique characteristics that distinguish a JavaBean from other Java classes:
•	It provides a default, no-argument constructor.
•	It should be serializable and implement the Serializable interface.
•	It may have a number of properties which can be read or written.
•	It may have a number of "getter" and "setter" methods for the properties.
JavaBeans Properties:
A JavaBean property is a named attribute that can be accessed by the user of the object. The attribute can be of any Java data type, including classes that you define.
A JavaBean property may be read, write, read only, or write only. JavaBean properties are accessed through two methods in the JavaBean's implementation class:
Method 	Description
getPropertyName()	For example, if property name is firstName, your method name would be getFirstName() to read that property. This method is called accessor.
setPropertyName()	For example, if property name is firstName, your method name would be setFirstName() to write that property. This method is called mutator.
A read-only attribute will have only a getPropertyName() method, and a write-only attribute will have only a setPropertyName() method.
JavaBeans Example:
Consider a student class with few properties:
package com.tutorialspoint;

public class StudentsBean implements java.io.Serializable
{
 private String firstName = null;
 private String lastName = null;
 private int age = 0;

 public StudentsBean() {
 }
 public String getFirstName(){
 return firstName;
 }
 public String getLastName(){
 return lastName;
 }
 public int getAge(){
 return age;
 }
 public void setFirstName(String firstName){
 this.firstName = firstName;
 }
 public void setLastName(String lastName){
 this.lastName = lastName;
 }
 public void setAge(Integer age){
 this.age = age;
 }
}
Accessing JavaBeans:
The useBean action declares a JavaBean for use in a JSP. Once declared, the bean becomes a scripting variable that can be accessed by both scripting elements and other custom tags used in the JSP. The full syntax for the useBean tag is as follows:
<jsp:useBean id="bean's name" scope="bean's scope" typeSpec/>
Here values for the scope attribute could be page, request, session or application based on your requirement. The value of the id attribute may be any value as a long as it is a unique name among other useBean declarations in the same JSP.
Following example shows its simple usage:
<html>
<head>
<title>useBean Example</title>
</head>
<body>

<jsp:useBean id="date" class="java.util.Date" />
<p>The date/time is <%= date %>

</body>
</html>
This would produce following result:
The date/time is Thu Sep 30 11:18:11 GST 2010
Accessing JavaBeans Properties:
Along with <jsp:useBean...>, you can use <jsp:getProperty/> action to access get methods and <jsp:setProperty/> action to access set methods. Here is the full syntax:
<jsp:useBean id="id" class="bean's class" scope="bean's scope">
 <jsp:setProperty name="bean's id" property="property name"
 value="value"/>
 <jsp:getProperty name="bean's id" property="property name"/>

</jsp:useBean>
The name attribute references the id of a JavaBean previously introduced to the JSP by the useBean action. The property attribute is the name of the get or set methods that should be invoked.
Following is a simple example to access the data using above syntax:
<html>
<head>
<title>get and set properties Example</title>
</head>
<body>

<jsp:useBean id="students"
 class="com.tutorialspoint.StudentsBean">
 <jsp:setProperty name="students" property="firstName"
 value="Zara"/>
 <jsp:setProperty name="students" property="lastName"
 value="Ali"/>
 <jsp:setProperty name="students" property="age"
 value="10"/>
</jsp:useBean>

<p>Student First Name:
 <jsp:getProperty name="students" property="firstName"/>
</p>
<p>Student Last Name:
 <jsp:getProperty name="students" property="lastName"/>
</p>
<p>Student Age:
 <jsp:getProperty name="students" property="age"/>
</p>

</body>
</html>
Let us make StudentsBean.class available in CLASSPATH and try to access above JSP. This would produce following result:
Student First Name: Zara

Student Last Name: Ali

Student Age: 10

2. Write a program for banking application using JDBC (consider 5 customer create a/c no and type, set some minimum balance do credit and debit operation and print consolidated report for month wise transaction.)
import java.sql.*;
import java.sql.DriverManager;
import java.util.*;
public class Connectivity {
 Connection conn=null;
 Statement st=null;
 String sql = null;
 ResultSet rs=null;
 public void connect() throws ClassNotFoundException, SQLException {
 Class.forName("org.apache.derby.jdbc.ClientDriver");
 conn=DriverManager.getConnection("jdbc:derby://localhost:1527/shop","root","root");
 st=conn.createStatement();
 System.out.println("Enter ur pin no");
 Scanner sn=new Scanner(System.in);
 String pin=sn.next();
 sql="select * from root.bank where ano='"+pin+"'";
 rs=st.executeQuery(sql);
 if(rs.next()){
 System.out.println("enter ur choice \n 1. withdraw 2.deposit 3.balance check");
 int ch=sn.nextInt();
 switch(ch){
 case 1:
 int balance=Integer.parseInt(rs.getString("balance"));
 System.out.println("Enter amount");
 int n=sn.nextInt();
 balance=balance-n;
 String bl=""+balance;
 if(balance>0){
 sql="UPDATE root.bank SET balance="+balance+" WHERE ano='"+pin+"'";
 if(st.executeUpdate(sql)>0){
 sql="select * from root.bank where ano='"+pin+"'";
 rs=st.executeQuery(sql);
 if(rs.next()){
 System.out.println("balance is"+rs.getString("balance"));

 System.out.println("success");
 } }
 }
 else{
 System.out.println("failed");
 }
 break;
 case 2:
 int balance1=Integer.parseInt(rs.getString("balance"));
 System.out.println("Enter amount");
 int n1=sn.nextInt();
 balance1=balance1+n1;

 if(balance1>0){
 sql="UPDATE root.bank SET balance="+balance1+" WHERE ano='"+pin+"'";
 if(st.executeUpdate(sql)>0){
 sql="select * from root.bank where ano='"+pin+"'";
 rs=st.executeQuery(sql);
 if(rs.next()){
 System.out.println("balance is"+rs.getString("balance"));

 System.out.println("success");
 } }
 }
 else{
 System.out.println("failed");
 }

 break;
 case 3:

 sql="select * from root.bank where ano='"+pin+"'";
 rs=st.executeQuery(sql);
 if(rs.next()){
 System.out.println("balance is"+rs.getString("balance"));

 System.out.println("success");
 }

 break;
 default:
 System.out.println("wrong choice");
 break;
 }
 }
}
 public static void main(String a[]) throws ClassNotFoundException, SQLException{
 Connectivity con=new Connectivity();
 con.connect();

 }
}

Output:

Enter ur pin no
1234
enter ur choice
 1. withdraw 2.deposit 3.balance check
2
Enter amount
100
balance is2100
success

3. Explain in detail the various steps used in implementing RMI with suitable example
Steps to Implementing RMI
1. There are essentially four software parts to implementing RMI. These are: - client program (does the request) - server program (implements the request) - stub interface (used by the client so that it knows what functions it can access on the server side) - skeleton interface (used by the server as the interface to the stub on the client side)
 2. The information flows as follows: the client talks to the stub, the stub talks to the skeleton and the skeleton talks to the server.
3. The Client. The client requires the client program itself and an interface to the server object that we are going to connect to. An interface example is shown below:
Public interface WeatherIntf extends java.rmi.Remote { Public String getWeather() throws java.rmi.RemoteException; } Figure 1. The Client Interface.
The important thing to note about the interface it that it defines an interface to the function to be called on the server. In this case, the function to be called is getWeather(). The client program itself is shown in Figure 2. The main points of the client program are as follows. First, to implement RMI, we need to use the “java.rmi” package. This package contains all the guts to implement RMI. In the main function, we first instantiate a Remote object of the type that we want to use. In this case, we are going to remotely connect to the WeatherServer object through the WeatherIntf interface. Once we have the object from the server then we can call its functions like we would as if the object were located on our computer.
Import java.rmi.*;
public class RMIdemo { public static void main(String[] args) { try { Remote robj = Naming.lookup("//192.168.0.9/WeatherServer"); WeatherIntf weatherserver = (WeatherIntf) robj; String forecast = weatherserver.getWeather(); System.out.println("The weather will be " + forecast);
 } catch (Exception e) {System.out.println(e.getMessage()); } } } Figure 2. The Client Program.
Once the Client and Interface have been written, they have to be compiled into class files.
4. The Server. It is interesting to note that the Server program also requires the Interface class as shown in Figure 1. This makes sense since the Server will be implementing the Interface. To use the Server, we need to use the “java.rmi” package and the “java.rmi.server.UnicastRemoteObject” package. The Server IS a UnicastRemoteObject, and is declared as such in the class declaration shown below. This means that the system will be a remote object that can be called from a client. Note that the method that we are going to call from the client is the getWeather() function and it can throw a RemoteException. The interesting function to see here is the main function. To implement RMI, we need to set a security manager with permissions that will allow clients to access functions on this pc from another pc. This is easily done by setting the System Security Manager to a RMISecurityManager. This will allow other pcs to call functions on this pc. Then we create an instance of this class simply so that we can pass the object as an argument to the Naming.Rebind. Rebind is the way a server announces its service to the Registry. The Registry is a program that contains a table of services that can be used on a server by client programs.
Import java.rmi.*; import java.rmi.server.UnicastRemoteObject;
public class WeatherServer extends UnicastRemoteObject implements WeatherIntf { public WeatherServer () throws java.rmi.RemoteException { super(); } public String getWeather() throws RemoteException { return Math.random()>0.5? "sunny" : "rainy"; } public static void main(String[] args) { System.setSecurityManager(new RMISecurityManager()); try { WeatherServer myWeatherServer = new WeatherServer(); Naming.rebind("/WeatherServer", myWeatherServer); } catch (Exception e) { System.out.println(e.getMessage()); } }
} Figure 3. The Server Program.
5. Compiling the code. So far we have created three java programs: the client, the server and the interface. Each of these must be compiled into class files. This can be done in the IDE or on the command line by using “javac WeatherIntf.java”, “javac WeatherServer.java”, or “javac RMIdemo.java” for example.
Once the three class files have been compiled, we now have to create the stub and the skeleton for the network communications between them. The is done by using the rmic compiler and the server program. The following can be entered at the command prompt: “rmic WeatherServer”. This will create “WeatherServer_Stub.class” and “WeatherServer_Skel.class” for the client and server respectively.
6. Running the Program. The Server needs the skeleton, the interface and the server program class files. The Client needs the Stub, the interface and the client program class files. The best place to put these files is in the Java Runtime Environment directory. On my machine it is: C:\Program Files\JavaSoft\JRE\1.3\lib\ext.
On the Server side we need to start the registry so that the server functions can be made public to other machines. This is done by starting the rmi registry via typing at the command prompt: “rmiregistry”. The registry program will continue to run in this window until CTRL-C is pressed.
To run the server with the RMISecurityManager, we have to define the permissions that we want to grant clients. We do this via a permit file. The permit file that I used is shown in Figure 4. Basically, I set connect and accept permissions on the socket connections. I also set read permissions on files in the tmp directory just to illustrate, although it is not required in this demo. Grant { permission java.net.SocketPermission "*", "connect"; permission java.net.SocketPermission "*', "accept"; permission java.io.FilePermission "/tmp/*", "read"; }; Figure 4. The permit file.
Now we can start the server and make it use the permit file by typing the following at the command prompt: “java –Djava.security.policy=permit WeatherServer”
The Client can then be started on the client machine by typing the following at its command prompt: “java RMIdemo”
7. Some things to note. Note that all that is needed on the Client side is the main client program, and the stub (WeatherIntf_stub). The Server side requires that rmiregistry is running, the main server program is started with the permit file, and the skeleton (WeatherIntf_skeleton).

4. Explain Socket, ServerSocket, InetAddress classes. Write a java program to find an IP address of the machine on which the program runs.

Socket Programming:
Sockets provide the communication mechanism between two computers using TCP. A client program creates a socket on its end of the communication and attempts to connect that socket to a server.
When the connection is made, the server creates a socket object on its end of the communication. The client and server can now communicate by writing to and reading from the socket.
The java.net.Socket class represents a socket, and the java.net.ServerSocket class provides a mechanism for the server program to listen for clients and establish connections with them.
The following steps occur when establishing a TCP connection between two computers using sockets:
•	The server instantiates a ServerSocket object, denoting which port number communication is to occur on.
•	The server invokes the accept() method of the ServerSocket class. This method waits until a client connects to the server on the given port.
•	After the server is waiting, a client instantiates a Socket object, specifying the server name and port number to connect to.
•	The constructor of the Socket class attempts to connect the client to the specified server and port number. If communication is established, the client now has a Socket object capable of communicating with the server.
•	On the server side, the accept() method returns a reference to a new socket on the server that is connected to the client's socket.
After the connections are established, communication can occur using I/O streams. Each socket has both an OutputStream and an InputStream. The client's OutputStream is connected to the server's InputStream, and the client's InputStream is connected to the server's OutputStream.
TCP is a twoway communication protocol, so data can be sent across both streams at the same time. There are following usefull classes providing complete set of methods to implement sockets.
ServerSocket Class Methods:
The java.net.ServerSocket class is used by server applications to obtain a port and listen for client requests
Methods with Description
1	public ServerSocket(int port) throws IOException
Attempts to create a server socket bound to the specified port. An exception occurs if the port is already bound by another application.
2	public ServerSocket(int port, int backlog) throws IOException
Similar to the previous constructor, the backlog parameter specifies how many incoming clients to store in a wait queue.
3	public ServerSocket(int port, int backlog, InetAddress address) throws IOException
Similar to the previous constructor, the InetAddress parameter specifies the local IP address to bind to. The InetAddress is used for servers that may have multiple IP addresses, allowing the server to specify which of its IP addresses to accept client requests on
4	public ServerSocket() throws IOException
Creates an unbound server socket. When using this constructor, use the bind() method when you are ready to bind the server socket
If the ServerSocket constructor does not throw an exception, it means that your application has successfully bound to the specified port and is ready for client requests.
Here are some of the common methods of the ServerSocket class:
SN	Methods with Description
1	public int getLocalPort()
Returns the port that the server socket is listening on. This method is useful if you passed in 0 as the port number in a constructor and let the server find a port for you.
2	public Socket accept() throws IOException
Waits for an incoming client. This method blocks until either a client connects to the server on the specified port or the socket times out, assuming that the time-out value has been set using the setSoTimeout() method. Otherwise, this method blocks indefinitely
3	public void setSoTimeout(int timeout)
Sets the time-out value for how long the server socket waits for a client during the accept().
4	public void bind(SocketAddress host, int backlog)
Binds the socket to the specified server and port in the SocketAddress object. Use this method if you instantiated the ServerSocket using the no-argument constructor.
When the ServerSocket invokes accept(), the method does not return until a client connects. After a client does connect, the ServerSocket creates a new Socket on an unspecified port and returns a reference to this new Socket. A TCP connection now exists between the client and server, and communication can begin.
Socket Class Methods:
The java.net.Socket class represents the socket that both the client and server use to communicate with each other. The client obtains a Socket object by instantiating one, whereas the server obtains a Socket object from the return value of the accept() method.
The Socket class has five constructors that a client uses to connect to a server:
SN	Methods with Description
1	public Socket(String host, int port) throws UnknownHostException, IOException.
This method attempts to connect to the specified server at the specified port. If this constructor does not throw an exception, the connection is successful and the client is connected to the server.
2	public Socket(InetAddress host, int port) throws IOException
This method is identical to the previous constructor, except that the host is denoted by an InetAddress object.
3	public Socket(String host, int port, InetAddress localAddress, int localPort) throws IOException.
Connects to the specified host and port, creating a socket on the local host at the specified address and port.
4	public Socket(InetAddress host, int port, InetAddress localAddress, int localPort) throws IOException.
This method is identical to the previous constructor, except that the host is denoted by an InetAddress object instead of a String
5	public Socket()
Creates an unconnected socket. Use the connect() method to connect this socket to a server.
When the Socket constructor returns, it does not simply instantiate a Socket object but it actually attempts to connect to the specified server and port.
Some methods of interest in the Socket class are listed here. Notice that both the client and server have a Socket object, so these methods can be invoked by both the client and server.
SN	Methods with Description
1	public void connect(SocketAddress host, int timeout) throws IOException
This method connects the socket to the specified host. This method is needed only when you instantiated the Socket using the no-argument constructor.
2	public InetAddress getInetAddress()
This method returns the address of the other computer that this socket is connected to.
3	public int getPort()
Returns the port the socket is bound to on the remote machine.
4	public int getLocalPort()
Returns the port the socket is bound to on the local machine.
5	public SocketAddress getRemoteSocketAddress()
Returns the address of the remote socket.
6	public InputStream getInputStream() throws IOException
Returns the input stream of the socket. The input stream is connected to the output stream of the remote socket.
7	public OutputStream getOutputStream() throws IOException
Returns the output stream of the socket. The output stream is connected to the input stream of the remote socket
8	public void close() throws IOException
Closes the socket, which makes this Socket object no longer capable of connecting again to any server
InetAddress Class Methods:
This class represents an Internet Protocol (IP) address. Here are following usefull methods which you would need while doing socket programming:
SN	Methods with Description
1	static InetAddress getByAddress(byte[] addr)
Returns an InetAddress object given the raw IP address .
2	static InetAddress getByAddress(String host, byte[] addr)
Create an InetAddress based on the provided host name and IP address.
3	static InetAddress getByName(String host)
Determines the IP address of a host, given the host's name.
4	String getHostAddress()
Returns the IP address string in textual presentation.
5	String getHostName()
Gets the host name for this IP address.
6	static InetAddress InetAddress getLocalHost()
Returns the local host.
7	String toString()
Converts this IP address to a String.

Example:
java program to find an IP address of the machine on which the program runs.
package javaapplication2;
import java.util.*;
import java.lang.*;
import java.net.*;
 public class JavaApplication2 {
 public static void main(String args[]) {
 try{
 InetAddress ownIP=InetAddress.getLocalHost();
 System.out.println("IP of my system is := "+ownIP.getHostAddress());
 }catch (Exception e){
 System.out.println("Exception caught ="+e.getMessage())
}}}

5. Write a client program to send any string from its standard input to the server program. The server program reads the string, finds number of characters and digits and sends it back to client program. Use connection-oriented or connection-less communication.
SERVER:
import java.io.*;
import java.util.*;
class Server
{
 public static void main(String args[])
	{
		ServerSocket ss;
		Socket s;
		PrintStream ps;
		DataInputStream dis;
		String str;
		try
		{
		ss=new ServerSocket(8020);
		s=ss.accept();
		ps=new PrintStream(s.getOutputStream());
		dis=new DataInputStream(s.getInputStream());
		str=dis.readLine();
		System.out.println("string from client is "+str);
		System.out.println("length of the string is "+str.length());
 ps.println(str.length());
		ps.close();}
		catch(IOException e)
		{
			System.out.println("The exception is :"+e);
		}}}

CLIENT:
import java.net.*;
import java.io.*;
class Stringlength
{
public static void main (String args[])
	{
		Socket soc;
		DataInputStream dis;
		String str;
		PrintStream ps;
		try
		{
			InetAddress ia=InetAddress.getLocalHost();
			soc=new Socket(ia,8020);
			dis=new DataInputStream(soc.getInputStream());
 ps=new PrintStream(soc.getOutputStream());
 ps.println("hello");
			System.out.println("word requested is hello");
			String len=dis.readLine();
			System.out.println("len of the string is"+len);
		}
		catch(IOException e)
		{
			System.out.println("THE EXCEPTION is :"+e);

		}}}
OUTPUT:
SERVER:
C:\java>java Server
string from client is hello
length of the string is 5
CLIENT:
C:\java>java Stringlength
string from client is hello
length of the string is 5

6. Develop a socket program to send a set of sales data (use your own sales figures) one by one to the server. Write the corresponding server side program to calculate the commission for each sales man and return the result to the client.
Server:

import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
public class Salesserver {
 public static void main(String args[])
	{
		ServerSocket ss;
		Socket s;
		PrintStream ps;
		DataInputStream dis;
		int str;
		try
		{
		ss=new ServerSocket(8020);
		s=ss.accept();
		ps=new PrintStream(s.getOutputStream());
		dis=new DataInputStream(s.getInputStream());
		str=Integer.parseInt(dis.readLine());
		System.out.println("no of salesman:"+str);
 for(int i=0;i<str;i++)
 {
 int sale=Integer.parseInt(dis.readLine());
 System.out.println("no of sales for salesman"+i+1+":"+sale);
 System.out.println("commission for salesman"+(i+1)+":"+(sale*100));
 ps.println(sale);
 ps.println(sale*100);
 }
		ps.close();
	
		}
		catch(IOException e)
		{
			System.out.println("The exception is :"+e);
		}
	}

}
Client:
import java.net.*;
import java.io.*;
import java.util.Scanner;
public class Salesclient
{
	public static void main (String args[])
	{
		Socket soc;
		DataInputStream dis;
		String str;
		PrintStream ps;
		try
		{
			InetAddress ia=InetAddress.getLocalHost();
			soc=new Socket(ia,8020);
			dis=new DataInputStream(soc.getInputStream());
 ps=new PrintStream(soc.getOutputStream());
 System.out.println("enter no of salesman");
 Scanner sn=new Scanner(System.in);
 int n=sn.nextInt();
 ps.println(n);
			for(int i=0;i<n;i++){
 System.out.println("enter sale"+(i+1));
 int m=sn.nextInt();
 ps.println(m);
		 int len=0;
 len=Integer.parseInt(dis.readLine());
 System.out.println("commision for salesman"+(i+1)+":"+(len*100));
 }
		}
		catch(IOException e)
		{
			System.out.println("THE EXCEPTION is :"+e);
		}
	}
}
OUTPUT:

SERVER:

C:\java>java Salesserver
no of salesman:2
no of sales for salesman01:2
commission for salesman1:200
no of sales for salesman11:3
commission for salesman2:300

CLIENT:
C:\java>java Salesserver
no of salesman:2
no of sales for salesman01:2
commission for salesman1:200
no of sales for salesman11:3
commission for salesman2:300

7. Create a TCP server which accepts data from a TCP Client and stores it in a file. The data should be combined and sent back to the client only after receiving twice from the client(NOV/DEC 2015)
Client:
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <arpa/inet.h>

#define MAXLINE 4096 /*max text line length*/
#define SERV_PORT 3000 /*port*/

int
main(int argc, char **argv)
{
 int sockfd;
 struct sockaddr_in servaddr;
 char sendline[MAXLINE], recvline[MAXLINE];

 //basic check of the arguments
 //additional checks can be inserted
 if (argc !=2) {
 perror("Usage: TCPClient <IP address of the server");
 exit(1);
 }

 //Create a socket for the client
 //If sockfd<0 there was an error in the creation of the socket
 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) <0) {
 perror("Problem in creating the socket");
 exit(2);
 }

 //Creation of the socket
 memset(&servaddr, 0, sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr= inet_addr(argv[1]);
 servaddr.sin_port = htons(SERV_PORT); //convert to big-endian order

 //Connection of the client to the socket
 if (connect(sockfd, (struct sockaddr *) &servaddr, sizeof(servaddr))<0) {
 perror("Problem in connecting to the server");
 exit(3);
 }

 while (fgets(sendline, MAXLINE, stdin) != NULL) {

 send(sockfd, sendline, strlen(sendline), 0);

 if (recv(sockfd, recvline, MAXLINE,0) == 0){
 //error: server terminated prematurely
 perror("The server terminated prematurely");
 exit(4);
 }
 printf("%s", "String received from the server: ");
 fputs(recvline, stdout);
 }

 exit(0);
}

Server:
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <unistd.h>

#define MAXLINE 4096 /*max text line length*/
#define SERV_PORT 3000 /*port*/
#define LISTENQ 8 /*maximum number of client connections */

int main (int argc, char **argv)
{
 int listenfd, connfd, n;
 socklen_t clilen;
 char buf[MAXLINE];
 struct sockaddr_in cliaddr, servaddr;

 //creation of the socket
 listenfd = socket (AF_INET, SOCK_STREAM, 0);

 //preparation of the socket address
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(SERV_PORT);

 bind (listenfd, (struct sockaddr *) &servaddr, sizeof(servaddr));

 listen (listenfd, LISTENQ);

 printf("%s\n","Server running...waiting for connections.");

 for (; ;) {

 clilen = sizeof(cliaddr);
 connfd = accept (listenfd, (struct sockaddr *) &cliaddr, &clilen);
 printf("%s\n","Received request...");

 while ((n = recv(connfd, buf, MAXLINE,0)) > 0) {
 printf("%s","String received from and resent to the client:");
 puts(buf);
 send(connfd, buf, n, 0);
 }

 if (n < 0) {
 perror("Read error");
 exit(1);
 }
 close(connfd);

 }
 //close listening socket
 close (listenfd);
}

8. Write code to implement a telephone directory application where the administrator on entering his appropriate user id and password(requires validation of the form) should be able to add, delete or modify the records in the database use JavaScript and JDBC(MySQL or ORACLE) (NOV/DEC 2015)
Index.html
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>index</title>
 </head>
 <body>
 <form action="serv" method="post">
 name:
 <input type="text" name="user">
 pass:
 <input type="password" name="pass">
 <input type="submit" value="submit">
 </form>
 </body>
</html>
serv.java:
import java.io.IOException;
import java.io.PrintWriter;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@WebServlet(urlPatterns = {"/serv"})
public class serv extends HttpServlet {
 protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 try {
 PrintWriter out = response.getWriter();
 Connection con;
 Statement st=null;
 ResultSet rs=null;
 Class.forName("org.apache.derby.jdbc.ClientDriver");
 con=DriverManager.getConnection("jdbc:derby://localhost:1527/form","root"," ");
 String name=request.getParameter("user");
 String pass=request.getParameter("pass");
 String sql="insert into app.form values('"+name+"','"+pass+"')";
 st=con.createStatement();
 st.execute(sql);
 String sql1="select * from app.form";
 rs=st.executeQuery(sql1);
out.println("<!DOCTYPE html>");
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet serv</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<table border=2>");
 while(rs.next())
 {

 String n=rs.getString("name");
 String p=rs.getString("pass");
 out.println("<tr>");
 out.println("<td>"+n+"</td>");
 out.println("<td>"+p+"</td>");
 out.println("</tr>");
 }
 out.println("</body>");
 out.println("</html>");
 }
 catch(Exception e)
 {

 }
 }

 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 @Override
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 processRequest(request, response);
 }
 @Override
 public String getServletInfo() {
 return "Short description";
 }
}

9. What is a java bean? Write down the properties of a java Bean in detail. (NOV/DEC 2015)

Java Bean
A Java Bean is a java class that should follow following conventions:
•	It should have a no-arg constructor.
•	It should be Serializable.
•	It should provide methods to set and get the values of the properties, known as getter and setter methods.
Why use Java Bean?
According to Java white paper, it is a reusable software component. A bean encapsulates many objects into one object, so we can access this object from multiple places. Moreover, it provides the easy maintenance.
Simple example of java bean class
1.	//Employee.java
2.	
3.	package mypack;
4.	public class Employee implements java.io.Serializable{
5.	private int id;
6.	private String name;
7.	
8.	public Employee(){}
9.	
10.	public void setId(int id){this.id=id;}
11.	
12.	public int getId(){return id;}
13.	
14.	public void setName(String name){this.name=name;}
15.	
16.	public String getName(){return name;}
17.	
18.	}
How to access the java bean class?
To access the java bean class, we should use getter and setter methods.
1.	package mypack;
2.	public class Test{
3.	public static void main(String args[]){
4.	
5.	Employee e=new Employee();//object is created
6.	
7.	e.setName("Arjun");//setting value to the object
8.	
9.	System.out.println(e.getName());
10.	
11.	}}
Note: There are two ways to provide values to the object, one way is by constructor and second is by setter method.

jsp:useBean action tag
1.	jsp:useBean action tag
2.	Syntax of jsp:useBean action tag
3.	Attributes and Usage of jsp:useBean action tag
4.	Simple example of jsp:useBean action tag
The jsp:useBean action tag is used to locate or instantiate a bean class. If bean object of the Bean class is already created, it doesn't create the bean depending on the scope. But if object of bean is not created, it instantiates the bean.
Syntax of jsp:useBean action tag
<jsp:useBean id= "instanceName" scope= "page | request | session | application"
class= "packageName.className" type= "packageName.className"
beanName="packageName.className | <%= expression >" >
</jsp:useBean>
Attributes and Usage of jsp:useBean action tag
1.	id: is used to identify the bean in the specified scope.
2.	scope: represents the scope of the bean. It may be page, request, session or application. The default scope is page.
o	page: specifies that you can use this bean within the JSP page. The default scope is page.
o	request: specifies that you can use this bean from any JSP page that processes the same request. It has wider scope than page.
o	session: specifies that you can use this bean from any JSP page in the same session whether processes the same request or not. It has wider scope than request.
o	application: specifies that you can use this bean from any JSP page in the same application. It has wider scope than session.
3.	class: instantiates the specified bean class (i.e. creates an object of the bean class) but it must have no-arg or no constructor and must not be abstract.
4.	type: provides the bean a data type if the bean already exists in the scope. It is mainly used with class or beanName attribute. If you use it without class or beanName, no bean is instantiated.
5.	beanName: instantiates the bean using the java.beans.Beans.instantiate() method.
__
Simple example of jsp:useBean action tag
In this example, we are simply invoking the method of the Bean class.
For the example of setProperty, getProperty and useBean tags, visit next page.
Calculator.java (a simple Bean class)
1.	package com.javatpoint;
2.	public class Calculator{
3.	
4.	public int cube(int n){return n*n*n;}
5.	
6.	}
index.jsp file
1.	<jsp:useBean id="obj" class="com.javatpoint.Calculator"/>
2.	
3.	<%
4.	int m=obj.cube(5);
5.	out.print("cube of 5 is "+m);
6.	%>
download this example

\
jsp:setProperty and jsp:getProperty action tags
1.	jsp:setProperty and jsp:getProperty action tags
2.	Syntax of jsp:setProperty action tag
3.	Example of jsp:setProperty
4.	jsp:getProperty action tag
5.	Syntax of jsp:getProperty action tag
6.	Example of jsp:getProperty action tag
7.	Example of bean development in JSP
The setProperty and getProperty action tags are used for developing web application with Java Bean. In web devlopment, bean class is mostly used because it is a reusable software component that represents data.
The jsp:setProperty action tag sets a property value or values in a bean using the setter method.

Syntax of jsp:setProperty action tag
1.	<jsp:setProperty name="instanceOfBean" property= "*" |
2.	property="propertyName" param="parameterName" |
3.	property="propertyName" value="{ string | <%= expression %>}"
4.	/>
__
Example of jsp:setProperty action tag if you have to set all the values of incoming request in the bean
1.	<jsp:setProperty name="bean" property="*" />
__
Example of jsp:setProperty action tag if you have to set value of the incoming specific property
1.	<jsp:setProperty name="bean" property="username" />
__
Example of jsp:setProperty action tag if you have to set a specific value in the property
1.	<jsp:setProperty name="bean" property="username" value="Kumar" />
__
jsp:getProperty action tag
The jsp:getProperty action tag returns the value of the property.
Syntax of jsp:getProperty action tag
1.	<jsp:getProperty name="instanceOfBean" property="propertyName" />
__
Simple example of jsp:getProperty action tag
3. <jsp:getProperty name="obj" property="name" />

10. Write down the steps involved in establishing client-server communication using UDP. (NOV/DEC 2015)

Java supports datagram communication through the following classes:
DatagramPacket
 DatagramSocket
The class DatagramPacket contains several constructors that can be used for creating packet object.
One of them is:
DatagramPacket(byte[] buf, int length, InetAddress address, int port);
This constructor is used for creating a datagram packet for sending packets of length length to the
specifi ed port number on the specifi ed host. The message to be transmitted is indicated in the fi rst argument.
The key methods of DatagramPacket class are:
byte[] getData()
Returns the data buffer.
int getLength()
Returns the length of the data to be sent or the length of the data received.
void setData(byte[] buf)
Sets the data buffer for this packet.
void setLength(int length)
Sets the length for this packet.
The class DatagramSocket supports various methods that can be used for transmitting or receiving
data a datagram over the network. The two key methods are:
void send(DatagramPacket p)
Sends a datagram packet from this socket.
void receive(DatagramPacket p)
Receives a datagram packet from this socket.
A simple UDP server program that waits for client’s requests and then accepts the message (datagram)
and sends back the same message is given below. Of course, an extended server program can manipulate client’s messages/request and send a new message as a response.

// UDPServer.java: A simple UDP server program.
import java.net.*;
import java.io.*;
public class UDPServer {
public static void main(String args[]){
DatagramSocket aSocket = null;
if (args.length < 1) {
System.out.println(“Usage: java UDPServer <Port Number>”);
System.exit(1);
}
try {
int socket_no = Integer.valueOf(args[0]).intValue();
aSocket = new DatagramSocket(socket_no);
byte[] buffer = new byte[1000];
while(true) {
DatagramPacket request = new DatagramPacket(buffer,
buffer.length);
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),
request.getLength(),request.getAddress(),
request.getPort());
aSocket.send(reply);
}
}
catch (SocketException e) {
System.out.println(“Socket: ” + e.getMessage());
}
catch (IOException e) {
System.out.println(“IO: ” + e.getMessage());
}
finally {
if (aSocket != null)
aSocket.close();
}
}
}
A corresponding client program for creating a datagram and then sending it to the above server and then accepting a response is listed below.

// UDPClient.java: A simple UDP client program.
import java.net.*;
import java.io.*;
public class UDPClient {
public static void main(String args[]){
// args give message contents and server hostname
DatagramSocket aSocket = null;
if (args.length < 3) {
System.out.println(
“Usage: java UDPClient <message> <Host name> <Port number>”);
System.exit(1);
}
try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = Integer.valueOf(args[2]).intValue();
DatagramPacket request =
new DatagramPacket(m, args[0].length(), aHost, serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply);
System.out.println(“Reply: ” + new String(reply.getData()));
}
catch (SocketException e) {
System.out.println(“Socket: ” + e.getMessage());
}
catch (IOException e) {
System.out.println(“IO: ” + e.getMessage());
}
finally {
if (aSocket != null)
aSocket.close();
}
}
}

UNIT IV
APPLETS
PART- A (2 Marks)

1. What is an Applet?
Applet is a Java application, which can be executed in JVM, enabled web browsers.
2. What are methods available in the Applet class?
· init - To initialize the applet each time it's loaded (or reloaded).
· start - To start the applet's execution, such as when the applet's loaded or when the user revisits a page that contains the applet.
· stop - To stop the applet's execution, such as when the user leaves the applet's page or quits the browser.
· destroy - To perform a final cleanup in preparation for unloading.
3. Distinguish between paint and update method?
paint is basic display method. Many applets implement the paint method to draw the applet's representation within a browser page. Update is a method that can use along with paint to improve drawing performance.
4. What is AWT?
A collection of graphical user interface (GUI) components that were implemented using native-platform versions of the components. These components provide that subset of functionality which is common to all native platforms. Largely supplanted by the Project Swing component set.
5. List out some UI components available in AWT?
· Buttons (java.awt.Button)
· Checkboxes (java.awt.Checkbox)
· Single-line text fields (java.awt.TextField)
· Larger text display and editing areas (java.awt.TextArea)
· Labels (java.awt.Label)
· Lists (java.awt.List)
· Pop-up lists of choices (java.awt.Choice)
· Sliders and scrollbars (java.awt.Scrollbar)
· Drawing areas (java.awt.Canvas)
· Menus (java.awt.Menu, java.awt.MenuItem, java.awt.CheckboxMenuItem)
· Containers (java.awt.Panel, java.awt.Window and its subclasses)
6. Write some methods, which are used to add UI components in Applet?
· add - Adds the specified Component.
· remove - Removes the specified Component.
· setLayout - Sets the layout manager.
7. Write the Html code to load an Applet in the browser?
<APPLET CODE=AppletSubclass.class WIDTH=anInt
HEIGHT=anInt>
</APPLET>
8. How parameters are passed to an Applet?
The parameters are passed to an Applet by using param tag
<APPLET CODE=AppletSubclass.class WIDTH=anInt
HEIGHT=anInt>
<PARAM NAME=parameter1Name VALUE=aValue>
<PARAM NAME=parameter2Name VALUE=anotherValue>
</APPLET>
9. Write the attributes of the Applet tag?
< APPLET
[CODEBASE = codebaseURL]
CODE = appletFile
[ALT = alternateText]
[NAME = appletInstanceName]
WIDTH = pixels
HEIGHT = pixels
[ALIGN = alignment]
[VSPACE = pixels]
[HSPACE = pixels]
>
[< PARAM NAME = appletParameter1 VALUE = value
>]
[< PARAM NAME = appletParameter2 VALUE = value
>]
. . .
[alternateHTML]
</APPLET>

10. What is the difference between applications and applets?-
a)Application must be run on local machine whereas applet needs no explicit installation on local machine.
b)Application must be run explicitly within a java-compatible virtual machine whereas applet loads and runs itself automatically in a java-enabled browser.
c)Application starts execution with its main method whereas applet starts execution with its init method.
d)Application can run with or without graphical user interface whereas applet must run within a graphical user interface.
 11. When do you use codebase in applet?
When the applet class file is not in the same directory, codebase is used.
12. Explain in brief the interaction between a web server and a Servlet.
	 Web Server is a machine that has a HTTPD service running. A web server is the one that handles 	HTTP requests and generates HTTP responses. A Servlet is a server-side entity for servicing 	HTTP requests.
13. How is session tracking achieved by URL rewriting?
· URL Rewriting can be used in place where we don't want to use cookies. It is used to maintain the session. Whenever the browser sends a request then it is always interpreted as a new request because http protocol is a stateless protocol as it is not persistent. Whenever we want that out request object to stay alive till we decide to end the request object then, there we use the concept of session tracking. In session tracking firstly a session object is created when the first request goes to the server. Then server creates a token which will be used to maintain the session. The token is transmitted to the client by the response object and gets stored on the client machine. By default the server creates a cookie and the cookie get stored on the client machine
14. Explain the Servlet API life cycle methods in brief.
· init(): called when servlet is instantiated; must return before any other methods will be called. If
 intialization processing causes error it throw throw an exception called
 UnavailableException
· service(): method called directly by server when an HTTP request is received; this in turn calls
 doGet()
· destroy(): called when server shuts down(taking a servlet out of service
15. What is the purpose of cookies?
The main purpose of cookies is to identify users and possibly prepare customized Web pages for them. When you enter a Web site using cookies, you may be asked to fill out a form providing such information as your name and interests. This information is packaged into a cookie and sent to your Web browser which stores it for later use. The next time you go to the same Web site the server can use this information to present you with custom Web pages. Instead of seeing just a generic welcome page you might see a welcome page with your name on it.
16. What is the difference between doGet () and doPost ()?
	doGet()
	doPost()

	In doGet() the parameters are appended to the URL and sent along with header information.
	In doPost(), on the other hand will (typically) send the information through a socket back to the webserver and it won't show up in the URL bar.

	The amount of information you can send back using a GET is restricted as URLs can only be 1024 characters.
	You can send much more information to the server this way - and it's not restricted to textual data either. It is possible to send files and even binary data such as serialized Java objects!

	doGet() is a request for information; it does not
(or should not) change anything on the server. (doGet() should be idempotent)
	doPost() provides information (such as placing an order for merchandise) that the server is expected to remember

	Parameters are not encrypted
	Parameters are encrypted

	doGet() is faster if we set the response content length since the same connection is used. Thus increasing the performance
	doPost() is generally used to update or post some information to the server.doPost is slower compared to doGet since doPost does not write the content length

	doGet() should be idempotent. i.e. doGet should be able to be repeated safely many times
	This method does not need to be idempotent. Operations requested through POST can have side effects for which the user can be held accountable.

17. What is the difference between HttpServlet and GenericServlet?

	Generic Servlet
	HttpServlet

	GenericServlet class is direct subclass of Servlet interface.
	HttpServlet class is the direct subclass of Generic Servlet.

	Generic Servlet is protocol independent.
	HttpServlet is protocol dependent.

	It handles all types of protocol like HTTP, SMTP, FTP etc
	It handles only http protocol.

	Generic Servlet only supports service() method. It handles only simple request
	HttpServlet supports public void service(ServletRequest req,ServletResponse res) and protected void service(HttpServletRequest req,HttpServletResponse res).

	Generic Servlet only supports service() method.
	HttpServlet supports also doGet(),doPost(),doPut(),doDelete(),doHead(),doTrace(),doOptions()etc.

18.What are the difference between Parameters and Attributes?

	Parameters
	Attributes

	A "parameter" is a form field name/value pair passed from the HTML side of the world
	An "attribute" is a Java object name/value pair passed only through the internal Java Server processes.

	 Parameter value is a String
	Attribute value is Object.

	Parameters come from the client request.
	Attributes are set by the server side

	Parameters are read only i.e. generally can be retrieved, but not set. whereas
	Attributes are read/write .You can also set attributes programmatically and retrieve them later. This is very useful in the MVC pattern.

19. How Cookie entry will be made?
Each entry is made up of
· A name value pair which stores whatever data you want to save.
· A expiry date, after which time the entry will be deleted.
· The web domain and path and that the entry should be associated.
20.What is inter-servlet communication?
It is the communication between servlets. There are many ways to communicate between servlets which includes request dispatching, Http redirect, Servlet chaining, Http request, shared session , request, or application objects, direct method invocation and shared static or instance variables.
21 .What are the types of authentication?
· Http authentication: User name and password protection.
· Form based authentication: Unauthorized access to the form is protected.
22. Write the purpose of URL rewriting
· In URL rewriting, we append a token or identifier to the URL of the next Servlet or the next resource. We can send parameter name/value pairs using the following format:
· url?name1=value1&name2=value2&??
· A name and a value is separated using an equal = sign, a parameter name/value pair is separated from another parameter using the ampersand (&). When the user clicks the hyperlink, the parameter name/value pairs will be passed to the server.
23. Write two basic differences between JSP and servlet.
	JSP
	Servlet

	A JSP is typically oriented more towards displaying information
Ex: Display a report
	A servlet is more oriented towards processing information.
Ex: Process a user submitted form

	Coding JSP is easier
	Coding JSP is Complex

	JSP is based in Java, an object oriented language.
	Servlets are designed to work with in request response processing model

24. What are implicit objects? List them?
Certain objects that are available for the use in JSP documents without being declared first. These objects are parsed by the JSP engine and inserted into the generated servlet. The implicit objects re listed below
· request
· response
· pageContext
· session
· application
· out
· page
· exception
25. What are the different scope values for the <jsp:useBean>?
· page
· request
· session
· application
 26. What is JSP? Write two main usage of it. (NOV/DEC 2015)
JavaServer Pages (JSP) is a server-side programming technology that enables the creation of dynamic, platform-independent method for building Web-based applications.A JSP is typically oriented more towards displaying information.
Ex: Display a report
Usage:
· Coding JSP is easier
· JSP is based in Java, an object oriented language.
 27. Write about the lifecycle of an applet. (NOV/DEC 2015)
· init() method - Can be called when an applet is first loaded
· start() method - Can be called each time an applet is started.
· paint() method - Can be called when the applet is minimized or maximized.
· stop() method - Can be used when the browser moves off the applet’s page.
· destroy() method - Can be called when the browser is finished with the applet
PART- B (16 Marks)

1. Design a Java applet and add image, sound to it.
Java Applet
Applet is a special type of program that is embedded in the webpage to generate the dynamic content. It runs inside the browser and works at client side.
Advantage of Applet
There are many advantages of applet. They are as follows:
1. It works at client side so less response time.
1. Secured
1. It can be executed by browsers running under many plateforms, including Linux, Windows, Mac Os etc.

Example of displaying image in applet:

import java.awt.*;
import java.applet.*;
public class DisplayImage extends Applet {
Image picture;
public void init() {
 picture = getImage(getDocumentBase(),"sonoo.jpg");
 }
 public void paint(Graphics g) {
 g.drawImage(picture, 30,30, this);
 }
 }
Example of inserting sound in applet:
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
public class PlaySoundApplet extends Applet
implements ActionListener{
 Button play,stop;
 AudioClip audioClip;
 public void init(){
 play = new Button(" Play in Loop ");
 add(play);
 play.addActionListener(this);
 stop = new Button(" Stop ");
 add(stop);
 stop.addActionListener(this);
 audioClip = getAudioClip(getCodeBase(), "Sound.wav");
 }
 public void actionPerformed(ActionEvent ae){
 Button source = (Button)ae.getSource();
 if (source.getLabel() == " Play in Loop "){
 audioClip.play();
 }
 else if(source.getLabel() == " Stop "){
 audioClip.stop();
 }
 }
}
2. What is event handling in java? List out the available event classes and listener interfaces with suitable example.
Event Handling is the mechanism that controls the event and decides what should happen if an event occurs. This mechanism have the code which is known as event handler that is executed when an event occurs. Java Uses the Delegation Event Model to handle the events. This model defines the standard mechanism to generate and handle the events.Let's have a brief introduction to this model.

The Delegation Event Model has the following key participants namely:

 Source - The source is an object on which event occurs. Source is responsible for providing information of the occurred event to it's handler. Java provide as with classes for source object.

 Listener - It is also known as event handler.Listener is responsible for generating response to an event. From java implementation point of view the listener is also an object. Listener waits until it receives an event. Once the event is received , the listener process the event an then returns.

The benefit of this approach is that the user interface logic is completely separated from the logic that generates the event. The user interface element is able to delegate the processing of an event to the separate piece of code. In this model ,Listener needs to be registered with the source object so that the listener can receive the event notification. This is an efficient way of handling the event because the event notifications are sent only to those listener that want to receive them.

EventObject class

It is the root class from which all event state objects shall be derived. All Events are constructed with a reference to the object, the source, that is logically deemed to be the object upon which the Event in question initially occurred upon.This class is defined in java.util package.
Class declaration

Following is the declaration for java.util.EventObject class:

public class EventObject
 extends Object
 implements Serializable

Field

Following are the fields for java.util.EventObject class:

 protected Object source -- The object on which the Event initially occurred.

Class constructors
S.N.	Constructor & Description
1	EventObject(Object source)

Constructs a prototypical Event.
Class methods
S.N.	Method & Description
1	Object getSource()

The object on which the Event initially occurred.
2	String toString()

Returns a String representation of this EventObject.
Methods inherited

This class inherits methods from the following classes:

 java.lang.Object

AWT Event Classes:

Following is the list of commonly used event classes.
Sr. No.	Control & Description
1	AWTEvent

It is the root event class for all AWT events. This class and its subclasses supercede the original java.awt.Event class.
2	ActionEvent

The ActionEvent is generated when button is clicked or the item of a list is double clicked.
3	InputEvent

The InputEvent class is root event class for all component-level input events.
4	KeyEvent

On entering the character the Key event is generated.
5	MouseEvent

This event indicates a mouse action occurred in a component.
6	TextEvent

The object of this class represents the text events.
7	WindowEvent

The object of this class represents the change in state of a window.
8	AdjustmentEvent

The object of this class represents the adjustment event emitted by Adjustable objects.
9	ComponentEvent

The object of this class represents the change in state of a window.
10	ContainerEvent

The object of this class represents the change in state of a window.
11	MouseMotionEvent

The object of this class represents the change in state of a window.
12	PaintEvent

The object of this class represents the change in state of a window.

3. Discuss in detail about JSP Tag Libraries.

ACTION:
· Standard: provided by JSP itself
· Custom: provided by a tag library such as JSTL.

· JSTL is divided into several functional areas, each with its own namespace:
[image:]
Namespace prefix is
[image:]
JSTL CORE ACTIONS:
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
[image:]
· Common variables:
· var
· Represents name of a scoped variable that is assigned to by the action
· Must be a string literal, not an EL expression
· scope
· Specifies scope of scoped variable as one of the literals page, request, session, or application
set action
· Setting (and creating) a scoped variable
out action
· Normally used to write a string to the out JSP implicit object
· Automatically escapes XML special characters
if action
· General form includes scoped variable to receive test value
<c:set var="age" value="20" scope="session"></c:set>

<c:if test="${age ge 18}" var="x">
<h3><c:out value="WELCOME"></c:out></h3>
</c:if>

<h3><c:out value="${x}"></c:out></h3>

<c:if test="${x}">
 <h3><c:out value="WELCOME"></c:out></h3>
</c:if>
Output:
WELCOME
true
WELCOME
remove action
· Only attributes are var and scope
· Removes reference to the specified scoped variable from the scope object
<c:set var="x" value="10" scope="session"></c:set>
 	<c:set var="y" value="20" scope="session"></c:set>
 	<h3>Product :<c:out value="${x*y}"></c:out></h3>
 	<c:remove var="x" scope="session"/>
 	<c:remove var="y" scope="session"/>
<h3>Product :<c:out value="${x*y}"></c:out></h3>
Output:
Product :200
Product :0
choose action:
<c:set var="salary" scope="session" value="5000"/>
 <p>Your salary is : <c:out value="${salary}"/></p>
<c:choose>
 <c:when test="${salary > 1000}">
 Salary is very good.
 </c:when>
 <c:otherwise>
 Salary is very low
 </c:otherwise>
</c:choose>
Output:
Your salary is : 5000
Salary is very good.
forEach action:
	Used to increment a variable (writes 2, 4, 6, 8 to the out object)
<c:forEach begin="1" end="10" step="4" var="x">
 Begin Index value :${x}

 </c:forEach>
Output:
Begin Index value :1
Begin Index value :5
Begin Index value :9
url action
· value attribute is a URL to be written to the out JSP implicit object
· URL’s beginning with / are assumed relative to context path
· param elements can be used to define parameters that will be URL encoded

curl.jsp:
<c:url value="/URLTest.jsp" var="x" >
 <c:param name="d1" value="SCJP"/>
 <c:param name ="d2" value="SCWCD"/>
 </c:url>
<h1>The modified url : ${x},</h1>

click Here
Output:
The modified url : /JSTL/URLTest.jsp?d1=SCJP&d2=SCWCD,
click HereURLTest.jsp
<h2> This is URLTest JSP </h2>
 	<h2>First Parameter : : :${param.d1}</h2>
 	<h2>Second Parameter : : :${param.d2}</h2>

Output:
URL: http://localhost:8080/JSTL/URLTest.jsp?d1=SCJP&d2=SCWCD
This is URLTest JSP
First Parameter : : :SCJP
Second Parameter : : :SCWCD
JSTL FUNCTIONS (<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>):
· Function name followed by parenthesized, comma-separated list of EL expression arguments.
· Tag libraries define all functions
· Function names usually include a namespace prefix associated with the tag library.
<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/functions" %>
${fn:toLowerCase(param.name)}
JSTL SQL (<%@ taglib prefix="fn" uri="http://java.sun.com/jsp/jstl/sql" %>):
The JSTL SQL tag library provides tags for interacting with relational databases (RDBMSs) such as Oracle, mySQL, or Microsoft SQL Server.
The <sql:query> tag executes an SQL SELECT statement and saves the result in a scoped variable.
<sql:query dataSource="${snapshot}" var="result">
SELECT * from Emp;
</sql:query>
The <sql:setDataSource> tag sets the data source configuration variable or saves the data-source information in a scoped variable
<sql:setDataSource var="snapshot" driver="sun.jdbc.odbc.JdbcOdbcDriver"
 url="jdbc:odbc:NEO"//Data Source Name
 user="" password=""/>
FORMATTING TAGS: (<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>)
The JSTL formatting tags are used to format and display text, the date, the time, and numbers for internationalized Web sites. Following is the syntax to include Formatting library in your JSP:
XML TAGS (<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>)
The JSTL XML tags provide a JSP-centric way of creating and manipulating XML documents. Following is the syntax to include JSTL XML library in your JSP.
The JSTL XML tag library has custom tags for interacting with XML data. This includes parsing XML, transforming XML data, and flow control based on XPath expressions.

4. Explain the architecture of Servlet in detail with a sample Servlet program.
Servlet Architecture overview:
· The combination of HTML JavaScript and DOM is sometimes referred to as Dynamic HTML (DHTML)
· Web pages that include scripting are often called dynamic pages
· A simple HTML document without scripting known as static document
Web server response can be static or dynamic
· Static: When browser has requested an HTML document
· HTML document is retrieved from the file system and returned to the client
· Web server not responsible for generating content of response
· Find and send the content
· Dynamic: HTML document is generated by a program in response to an HTTP request
 Eg: Visiting a search engine website
· Java servlets are one technology for producing dynamic server responses
· Servlet is a Java class instantiated by the server to produce a dynamic response
· A particular method is called on this instance when server receives HTTP request
· Code in the servlet method can obtain information about the request and produce information to be included in the response
· It is done by calling methods on parameter objects passed to the method
· When the servlet returns control to the server , it creates a response from the information dynamically generated by servlet
Web Server-Servlet Interaction
[image:]
Web server Operation
1. When an HTTP request is received by a servlet capable server
 1. It determines based on URL whether the request handled by the servlet
 2. Any URL in which the path component begins with servlet
2. The servlet determines from URL which servlet handle the request and calls a method on that servlet
 1. Two parameters are passed to the method
 2. An object implementing the HttpservletRequest interface
 3. An object implementing the HttpservletResponse interface
 4. Both are defined as part of Java Servlet API which is implemented by server
· First method to access the information contained in the request message
· Second object to record the information that the servlet wishes to include in the HTTP response message
3. Servlet method executes by calling methods on
 HttpservletRequest and HttpservletResponse objects passed to it.
· The information stored in the latter object by the servlet method includes an HTML document along with some HTTP header information
· When servlet method finishes its processing it returns control to the server
4. The server formats the information stored in the HttpservletResponse object by the servlet into an
 HTTP response message then send to the client
INDEX.JSP:
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
 <FORM action ="Servlet2" method="get">
 USERNAME:<input type="text" name="user"/>
 PASSWORD:<input type="password" name="pass"/>
 <INPUT TYPE="SUBMIT" VALUE="SUBMIT"/>
 </FORM>
 </body>
</html>
SERVLET2.JAVA:
import java.io.IOException;
import java.io.PrintWriter;
import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
@WebServlet(name="Servlet2", urlPatterns={"/Servlet2"})
public class Servlet2 extends HttpServlet {
 @Override
 protected void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();

 String u=request.getParameter("user");
 String p=request.getParameter("pass");
 System.out.println("USER IS"+u);
 System.out.println("PASS IS"+p);
 if(u.equals("User1")&&p.equals("pass"))
 {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>WELCOME :" + u + "</h1>");
 /*out.println("<h1>PASSWORD IS " + p + "</h1>");*/
 out.println("</body>");
 out.println("</html>");
 }
 else
 {
 out.println("<html>");
 out.println("<head>");
 out.println("<title>Servlet</title>");
 out.println("</head>");
 out.println("<body>");
 out.println("<h1>" + u + " is not a valid user</h1>");
 out.println("</body>");
 out.println("</html>");
 } } }

5. What is a session? Explain how client state is maintained using session and also explain about session tracking and session management using an example.
SESSIONS
· A session refers to the entire interaction between a client and a server from the time of the client’s first request, which generally begins the session, to the time the session is terminated.
· The session could be terminated by the client’s request, or the server could automatically close it after a certain period of time.
· Without session management, each time a client makes a request to a server, it’s a brand new user with a brand new request from the server’s point of view.
[image: Description: TwoSessions]
.
Server knows that all of these requests are from the same client. The set of requests is known as a session
INDEX.JSP:
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>JSP Page</title>
 </head>
 <body>
 <form action="FirstSession" method="post">
 <input type="submit" value="Welcome to Online Purchase"/>
 </form>
 </body>
</html>
FirstSession.java
public class FirstSession extends HttpServlet
{
 protected void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
{
 	 response.setContentType("text/html;charset=UTF-8");
 	PrintWriter out = response.getWriter();
 	try
{
 HttpSession session = request.getSession();
 String id=session.getId();
 System.out.println(id);
	String ses_name=(String) session.getAttribute("ses_attr");
 System.out.println("Session_name:"+ses_name);
		if(session.isNew() || ses_name == null)
		{
			printSignInForm(out,"Greeting",id);
/*For URL Rewriting(Cookies Turned Off)
printSignInForm(out,response.encodeURL("Greeting"),id);
*/
		}
		else
		{
			welcomeBackPage(out,ses_name,id);
		}
 } finally {
 out.close();
 }
 }
public void printSignInForm(PrintWriter out, String action,String sess_id)
	{
		out.println("<Form method='post' action="+action+">");
		out.println("Session Id:" + sess_id);
 	out.println("Please Sign in :");
		out.println("<input type=text name=signIn>");
		out.println("
<input type=submit name=signin value=SignIn>");
	}
	private void welcomeBackPage(PrintWriter out,String signIn,String sess_id)
	{
 	out.println("Session Id:" + sess_id);
		out.println("Hey you're <h3>" +signIn+ " </h3>Welcome back!!!");
	}
}
Greeting.java
public class Greeting extends HttpServlet {
protected void processRequest(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try {
 String user = request.getParameter("signIn");
		HttpSession session = request.getSession();
 	String id=session.getId();
		if(user != null)
		{
			printThanks(out,user,id);
			session.setAttribute("ses_attr",user);
		}
	}
finally
{
 out.close();
 	 }
 }
private void printThanks(PrintWriter out,String signIn,String sess_id)
	{
 out.println("Session Id:" + sess_id);
		out.println("Thanks for signing in, <h3> "+signIn+ " </h3>");
		 out.println("
 Please visit again !");
/*For URL Rewriting(Cookies Turned Off)
out.println("
 Please visit again !");
	*/
	}
}
HttpSession interface:
METHODS
	Method
	Description

	public HttpSession getSession()
	Will cause one session to be created.

	public HttpSession getSession(boolean)
	true = will cause one to be created;
false = will return null (no session)

	public Object getAttribute(String name)
	Returns the object bound with the specified name in this session, or null if no object is bound under the name.

	public void setAttribute(String name, Object value)
	Binds an object to this session, using the name specified.

	public void removeAttribute(String name)
	Removes the object bound with the specified name from this session.

Session termination:
· By default, each session expires if a server-determined length of time elapses between a session’s HTTP requests
· Server destroys the corresponding session object
· Servlet code can:
· Terminate a session by calling invalidate() method on session object
· Set the expiration time-out duration (secs) by calling setMaxInactiveInterval(int)

6. Discuss in Detail about Servlet life cycle and Parameter Data.
Difference Between Static and Dynamic HTML?
· Static: HTML document is retrieved from the file system and returned to the client
· Dynamic: HTML document is generated by a program in response to an HTTP request
· Java servlets are one technology for producing dynamic server responses
· Servlet is a class instantiated by the server to produce a dynamic response
[image: Description: ServletArchitecture] [image:]			
What are all the Servlet API life cycle methods
Servlet API life cycle methods
· init(): called when servlet is instantiated; must return before any other methods will be called
· service(): method called directly by server when an HTTP request is received; default service() method calls doGet() (or related methods covered later)
· destroy(): called when server shuts down
PARAMETER DATA:
· The request object (which implements HttpServletRequest) provides information from the HTTP request to the servlet
· One type of information is parameter data, which is information from the query string portion of the HTTP request
query string with one parameter	[image:]
parameter name: arg
parameter value: aString 	
GET vs. POST method for forms:
· GET:
· Query string is part of URL
· Length of query string may be limited
· Recommended when parameter data is not stored but used only to request information (e.g., search engine query)
· POST:
· Query string is sent as body of HTTP request
· Length of query string is unlimited
· Recommended if parameter data is intended to cause the server to update stored data
· Most browsers will warn you if they are about to resubmit POST data to avoid duplicate updates

7. Explain the various layout Managers available in Java.

LayoutManagers:
The LayoutManagers are used to arrange components in a particular manner. LayoutManager is an interface that is implemented by all the classes of layout managers. There are following classes that represents the layout managers:
1. java.awt.BorderLayout
2. java.awt.FlowLayout
3. java.awt.GridLayout
4. java.awt.CardLayout
5. java.awt.GridBagLayout
6. javax.swing.BoxLayout
7. javax.swing.GroupLayout
8. javax.swing.ScrollPaneLayout
9. javax.swing.SpringLayout etc.

BorderLayout:
The BorderLayout is used to arrange the components in five regions: north, south, east, west and center. Each region (area) may contain one component only. It is the default layout of frame or window. The BorderLayout provides five constants for each region:
1. public static final int NORTH
2. public static final int SOUTH
3. public static final int EAST
4. public static final int WEST
5. public static final int CENTER
Constructors of BorderLayout class:
· BorderLayout(): creates a border layout but with no gaps between the components.
· JBorderLayout(int hgap, int vgap): creates a border layout with the given horizontal and vertical gaps between the components.

GridLayout
	The GridLayout is used to arrange the components in rectangular grid. One component is displayed in each rectangle.

Constructors of GridLayout class:
	1. GridLayout(): creates a grid layout with one column per component in a row.
2. GridLayout(int rows, int columns): creates a grid layout with the given rows and columns but no gaps between the components.
3. GridLayout(int rows, int columns, int hgap, int vgap): creates a grid layout with the given rows and columns alongwith given horizontal and vertical gaps.

FlowLayout
	The FlowLayout is used to arrange the components in a line, one after another (in a flow). It is the default layout of applet or panel.

Fields of FlowLayout class:
	1. public static final int LEFT
2. public static final int RIGHT
3. public static final int CENTER
4. public static final int LEADING
5. public static final int TRAILING

Constructors of FlowLayout class:
	1. FlowLayout(): creates a flow layout with centered alignment and a default 5 unit horizontal and vertical gap.
2. FlowLayout(int align): creates a flow layout with the given alignment and a default 5 unit horizontal and vertical gap.
3. FlowLayout(int align, int hgap, int vgap): creates a flow layout with the given alignment and the given horizontal and vertical gap.

BoxLayout class:
	The BoxLayout is used to arrange the components either vertically or horizontally. For this purpose, BoxLayout provides four constants. They are as follows:

Note: BoxLayout class is found in javax.swing package.
Fields of BoxLayout class:
	1. public static final int X_AXIS
2. public static final int Y_AXIS
3. public static final int LINE_AXIS
4. public static final int PAGE_AXIS

Constructor of BoxLayout class:
	1. BoxLayout(Container c, int axis): creates a box layout that arranges the components with the given axis.

CardLayout class
	The CardLayout class manages the components in such a manner that only one component is visible at a time. It treats each component as a card that is why it is known as CardLayout.

Constructors of CardLayout class:
	1. CardLayout(): creates a card layout with zero horizontal and vertical gap.
2. CardLayout(int hgap, int vgap): creates a card layout with the given horizontal and vertical gap.

Commonly used methods of CardLayout class:
	· public void next(Container parent): is used to flip to the next card of the given container.
· public void previous(Container parent): is used to flip to the previous card of the given container.
· public void first(Container parent): is used to flip to the first card of the given container.
· public void last(Container parent): is used to flip to the last card of the given container.
· public void show(Container parent, String name): is used to flip to the specified card with the given name.

8. Using AWT create a frame which contains four text field name, age, sex and qualification lay out using flow layout manager. Run the program and give the values of the textfields in the command line. Initially all the values of text field should be blank. On clicking the click button all the text fields should contain the command line inputs. (NOV/DEC 2015)

package javaapplication1;

import java.awt.*;
import java.awt.event.*;
import java.util.Scanner;

public class awt
{
 private static Label label4,label1,label2,label3;
 private static TextField t1,t2,t3,t4;
 private static String name,age,sex,qualification;
public static void main(String[]args)
{
Frame mainFrame= new Frame();
 mainFrame.setSize(400,400);
 Label label1 = null,label2 = null,label3 = null,label4 = new Label();
 label1=new Label();

 label1.setText("Name:");
 t1=new TextField();

 label2=new Label();

 label2.setText("Age:");
 t2=new TextField();
 label3=new Label();

 label3.setText("Sex:");
 t3=new TextField();

 label4=new Label();
 label4.setText("Qualification:");
 t4=new TextField();
 Scanner s=new Scanner(System.in);
 name=s.nextLine();
 age=s.nextLine();
 sex=s.nextLine();
 qualification=s.nextLine();
 Button b=new Button("display values");
 b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t1.setText(name);
 t2.setText(age);
 t3.setText(sex);
 t4.setText(qualification);
 }
 });
 Panel controlPanel = new Panel();
 controlPanel.setLayout(new FlowLayout());
 mainFrame.add(controlPanel);
 controlPanel.add(label1);
 controlPanel.add(t1);
 controlPanel.add(label2);
 controlPanel.add(t2);
 controlPanel.add(label3);
 controlPanel.add(t3);
 controlPanel.add(label4);
 controlPanel.add(t4);
 controlPanel.add(b);
 mainFrame.setVisible(true);
 mainFrame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
}
}

9. i. In an Applet create a frame with two text fields and three buttons (cut, copy and paste). Data entered in the first text field should respond according to the buttons clicked. (NOV/DEC 2015)
ii. Write a javaservlet program to implement Cookies using getCookies(),getName() and getValue()methods. (NOV/DEC 2015)

(i)

import java.applet.Applet;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
public class edit extends Applet {
 TextField t1,t2,t3;
 Label l1,l2,l3;
 Button cut,copy,paste;
 static String s=null;
 public void init()
 {
 Frame f=new Frame();
 f.setSize(500, 500);
 l1=new Label("cut");
 t1=new TextField();
 l2=new Label("copy");
 t2=new TextField();
 l3=new Label("paste");
 t3=new TextField();
 Panel p=new Panel();
 cut=new Button("cut");
 cut.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 s=t1.getText();
 t1.setText("");
 }
 });

 copy=new Button("copy");
 copy.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 s=t2.getText();
 }
 });
 paste=new Button("paste");
 paste.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 t3.setText(s);
 }
 });
 f.add(p);
 p.add(l1);
 p.add(t1);
 p.add(l2);
 p.add(t2);
 p.add(l3);
 p.add(t3);
 p.add(cut);
 p.add(copy);
 p.add(paste);
 f.setVisible(true);
 f.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent windowEvent){
 System.exit(0);
 }
 });
 }
}

(ii) Get Cookies:

package com.journaldev.servlet.cookie;

import java.io.IOException;
import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.Cookie;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

@WebServlet("/cookie/GetCookie")
public class GetCookie extends HttpServlet {
 private static final long serialVersionUID = 1L;

 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
 PrintWriter out = response.getWriter();
 Cookie[] requestCookies = request.getCookies();

 out.write("<html><head></head><body>");
 out.write("<h3>Hello Browser!!</h3>");
 if(requestCookies != null){
 out.write("<h3>Request Cookies:</h3>");
 for(Cookie c : requestCookies){
 out.write("Name="+c.getName()+", Value="+c.getValue()+", Comment="+c.getComment()
 +", Domain="+c.getDomain()+", MaxAge="+c.getMaxAge()+", Path="+c.getPath()
 +", Version="+c.getVersion());
 out.write("
");
 //delete cookie
 if(c.getName().equals("Test")){
 c.setMaxAge(0);
 response.addCookie(c);
 }
 }
 }
 out.write("</body></html>");
 }

}
UNIT V
XML AND WEB SERVICES
PART- A (2 Marks)

1. What is meant by a XML namespace?
XML Namespaces provide a method to avoid element name conflicts. When using prefixes in XML, a so-called namespace for the prefix must be defined. The namespace is defined by the xmlns attribute in the start tag of an element. The namespace declaration has the following syntax. xmlns:prefix="URI".
<root> <h:table xmlns:h="http://www.w3.org/TR/html4/">
<h:tr>
<h:td>Apples</h:td>
<h:td>Bananas</h:td>
</h:tr> </h:table>
<f:table xmlns:f="http://www.w3schools.com/furniture">
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
 <f:length>120</f:length> </f:table> </root>
2. What is the purpose of XSLT?
The XSLT stands for XSL Transformations and XSL stands for extensible Style sheet Language. The XSLT is used for defining the XML document transformation and presentations.
3. What does XSLT mean?
XSLT stands for XSL Transformations and is a language used to transform XML documents into XHTML documents or to other XML documents
4. What is XQuery?
XQuery is a query and functional programming language that is designed to query and transform collections of structured and unstructured data, usually in the form of XML, text and with vendor-specific extensions for other data formats (JSON, binary, etc.).
5. What are complex types?
complex types are an important aspects of xml schema that allow application developers to define application-specific data types that can be checked by programs that check XML document for validity. XML schema divides complex types into two categories: those with simple content & those with complex content.
6. What are all the Transformation techniques?
· XSLT - it is an XML- based languages used to transform XML documents into others format such as HTML for web display.
· XLINK - highlighting that element or taking the user directly to that point in the document.
· XPATH - xpath gets its name from its use of a payh notation to navigate through the hierarchical tree structure of an XML document
XQUERY - it is W3C initiative to define a standard set of constructs for querying & searching XML document
7. What is meant by WSDL?
· WSDL stands for Web Services Description Language
· WSDL is based on XML
· WSDL is used to describe Web services
· WSDL is used to locate Web services
· WSDL is an XML-based language for locating and describing Web services
8. Define Serialization.
Object Serialization supports the encoding of objects, and the objects reachable from them, into a stream of bytes; and it supports the complementary reconstruction of the object graph from the stream. Serialization is used for lightweight persistence and for communication via sockets or Remote Method Invocation (RMI).
9. List the basic concepts behind JAX-RPC technology.
Java API for XML-based RPC (JAX-RPC) allows a java application to invoke a Java-based Web Service with a known description while still being consistent with its WSDL description. It can be seen as Java RMIs over Web services.
10. What is UDDI?
UDDI means Universal Description, Discovery and Integration. UDDI is a protocol for communicating with registries. The core of UDDI is the UDDI Business Registry, a global, pubic, online directory.
11. List some examples of web services.
· Geo IP: http://www.webservicex.net/geoipservice.asmx?op=GetGeoIP
· Whois: http://www.webservicex.net/whois.asmx?op=GetWhoIS
· SMS: http://www.webservicex.net/sendsmsworld.asmx
12. State the uses of WSDL.
· WSDL stands for Web Services Description Language.
· WSDL is a document written in XML.
· WSDL is an XML-based language for locating and describing Web services.
13. Why do you want to describe a web service?
· Web Services Description Language (WSDL) is a document written in XML. The document describes a Web service. It specifies the location of the service and the operations (or methods) the service exposes
14. Give an example of a web services registry and its function.
It refers to a place in which service providers can impart information about their offered services and potential clients can search for services
Example: IBM - WebSphere Service Registry, Oracle Service Registry etc.
15. What is the purpose of XML schema?
· The schemas are more specific and provide the support for data types.
· The schema is aware of namespace
· The XML Schema is written in XML itself and has a large number of built-in and derived types.
· The xml schema is the W3C recommendation. Hence it is supported by various XML validator and XML Processors.
16. Define the need for SOAP.
Simple Object Access Protocol (SOAP) is a protocol based on XML. It is used by the web services for exchange of information. The Client- Server communication is based on RPC. The HTTP does not design to handle the distributed objects that are required by the RPC. Hence another application protocol is build over HTTP which popularly known as SOAP. SOAP allows talking different applications that are running in two different operating systems.
17. What is the use of web services?
· Web services encompass a set of related standards that can enable two computers
· The data is passed back and forth using standard protocols such as HTTP, the same protocol used to transfer ordinary web pages.
· Web services operate using open, text-based standards that enable components written in different languages and on different platforms to communicate.
· They are ready to use pieces of software on the Internet. XML, SOAP, Web Services Description Language (WSDL) and Universal Description, Discovery and Integration (UDDI) are the standards on which web services rely.
· UDDI is another XML based format that enables developers and business to publish and locate Web services on a network.
18. List out some web service technologies?
· XML
· SOAP
· WSDL
19. What is SOAP?
Service Oriented Architecture Protocol.It provides a standard, extensible framework for packaging and exchanging XML messages. In the context of this architecture, SOAP also provides a convenient mechanism for referencing capabilities (typically by use of headers).
[image: soap.jpg]20. Define SOAP structure.

The SOAP envelope
<Envelope> is the root element in every SOAP message, and contains two child elements, an optional <Header> element, and a mandatory <Body> element.
The SOAP header
<Header> is an optional sub element of the SOAP envelope, and is used to pass application-related information that is to be processed by SOAP nodes along the message path; see The SOAP header.
The SOAP body
<Body> is a mandatory sub element of the SOAP envelope, which contains information intended for the ultimate recipient of the message; see The SOAP body.
The SOAP fault
<Fault> is a sub element of the SOAP body, which is used for reporting errors; see The SOAP fault.
XML elements in <Header> and <Body> are defined by the applications that make use of them, although the SOAP specification imposes some constraints on their structure.
21. Explain DTD for XML Schemas.
· XML documents are processed by applications
· Applications have assumptions about XML documents
· DTDs allow to formalize some of these constraints
· Part of the constraint checking must still be programmed
22. What is JWSDP?
Java Web Service Developer Pack (JWSDP) is a tool. Using the JWSDP tool the simple implementation files written in java can be converted to Web Service.
23. What are the disadvantages of schema?
· The XML schema is complex to design and hard to learn
· The XML document cannot be if the corresponding schema file is absent.
· Maintaining the schema for large and complex operations sometimes slows down the processing of XML document
24. Mention some of the disadvantageous of web services
Web services standards features such as transactions are currently nonexistent or still in their infancy compared to more mature distributed computing open standards such as CORBA. Web services may suffer from poor performance compared to other distributed computing approaches such as RMI, CORBA, or DCOM.
25. Differentiate Schema and DTD? (NOV/DEC 2015)
	
	Document Type Definition.
	XML Schema Definition.

	1)
	DTD provides less control on XML structure.
	XSD provides more control on XML structure

	2)
	DTDs are derived from SGMLsyntax.
	XSDs are written in XML.

	3)
	DTD doesn't support datatypes.
	XSD supports datatypes for elements and attributes.

	4)
	DTD doesn't support namespace.
	XSD supports namespace.

	5)
	DTD doesn't define order for child elements.
	XSD defines order for child elements.

	6)
	DTD is not extensible.
	XSD is extensible.

	7)
	DTD is not simple to learn..
	XSD is simple to learn because you don't need to learn new language.

26. What are the elements of WSDL? (NOV/DEC 2015)
The WSDL is a Web Service Descriptor Language which is based on XML.

	ELEMENT
	DESCRIPTION

	Types
	It Specifies the data types of the symbols used by the web services.

	Messages
	It specifies the messages used by the web services.

	Porttype
	It specifies the name of the operations

	Binding
	It specifies the name of the protocol of the web services, typically it is SOAP.

PART- B (16 Marks)

1. List and explain the XML syntax rules in detail. Explain how a XML document can be displayed on a browser.
· An XML document is one that follows certain syntax rules (most of which we followed for XHTML)

· An XML document consists of
· Markup
· Tags, which begin with < and end with >
· References, which begin with & and end with ;
· Character, e.g.
· Entity, e.g. <
· Character data: everything not markup
Staff1.xml:
<?xml version="1.0"?>
<company>
	<staff id="1001">
		<firstname>yong</firstname>
		<lastname>mook kim</lastname>
		<nickname>mkyong</nickname>
		<salary>100000</salary>
	</staff>
	<staff id="2001">
		<firstname>low</firstname>
		<lastname>yin fong</lastname>
		<nickname>fong fong</nickname>
		<salary>200000</salary>
	</staff>
</company>

· Element tags and elements
· Three types
· Start, e.g. <message>
· End, e.g. </message>
· Empty element, e.g.

· XML Rules:
· Start and end tags must properly nest
· Corresponding pair of start and end element tags plus everything in between them defines an element
· Character data may only appear within an element
· Start and empty-element tags may contain attribute specifications separated by white space
· Syntax: name = quoted value
Well-formed XML document:
· A well-formed XML document
· follows the XML syntax rules and
· has a single root element
· Well-formed documents have a tree structure
· Many XML parsers (software for reading/writing XML documents) use tree representation internally
XML parsers
· Two types of XML parsers:
· Validating
· Requires document type declaration
· Generates error if document does not
· Conform with DTD and
· Meet XML validity constraints
· Example: every attribute value of type ID must be unique within the document
· Non-validating
· Checks for well-formedness
· Can ignore external DTD

2. Given an XSLT document and a source XML document explain the XSLT transformation process that
 Produces a single result XML document.

· The Extensible Stylesheet Language (XSL) is an XML vocabulary typically used to transform XML documents from one form to another form
[image:]
· JAXP allows a Java program to use the Extensible Stylesheet Language (XSL) to extract data from one XML document, process that data, and produce another XML document containing the processed data.
For example, XSL can be used to extract information from an XML document and embed it within an XHTML document so that the information can be viewed using a web browser.
TRANSFORMER:
Main.java:
import java.io.FileOutputStream;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;
public class Main
{
 static String xml="D://WebTech//trans.XML";
 static String xslt="D://WebTech//trans.XSL";
 static String output="D://WebTech//trans.HTML";
 public static void main(String[] args)
 {
 try
 {
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer tr = tf.newTransformer(new StreamSource(xslt));
 tr.transform(new StreamSource(xml),new StreamResult(new FileOutputStream(output)));
 System.out.println("Output to " + output);
 }
 catch(Exception e)
 {
 }
 }
}
trans.xsl:
<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:template match="/">
 <html>
 <body>
 <h1>Indian Languages details</h1>
 <table border="1">
 <tr>
 <th>Language</th>
 <th>Family/Origin</th>
 <th>No. of speakers</th>
 <th>Region</th>
 </tr>
 <xsl:for-each select="language">
 <tr>
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="family"/></td>
 <td><xsl:value-of select="users"/></td>
 <td><xsl:value-of select="region"/></td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>
</xsl:stylesheet>
trans.xml:
<?xml version="1.0"?>
<!--<?xml-stylesheet type="text/xsl" href="trans.xsl"?>-->
<language>
<name>Kannada</name>
<region>Karnataka</region>
<users>38M</users>
<family>Dravidian</family>
</language>
trans.html:
Indian Languages details
	Language
	Family/Origin
	No. of speakers
	Region

	Kannada
	Dravidian
	38M
	Karnataka

3. Explain the role of XML namespaces with examples.
•	XML Namespace: Collection of element and attribute names associated with an XML vocabulary (such as XHTML)
•	Namespace Name: Absolute URI that is the name of the namespace
–	Ex: http://www.w3.org/1999/xhtml is the namespace name of XHTML 1.0
•	Default namespace for elements of a document is specified using a form of the xmlns attribute:

Another form of xmlns attribute known as a namespace declaration can be used to associate a namespace prefix with a namespace name:
xmlns:h="http://www.w3.org/TR/html4/"

•	In a namespace-aware XML application, all element and attribute names are considered qualified names
–	A qualified name has an associated expanded name that consists of a namespace name and a local name
–	Ex: <table> is a qualified name with expanded name <null, table>
–	Ex: <h:table> is a qualified name with expanded name
< http://www.w3.org/TR/html4, table>
Name Conflicts
In XML, element names are defined by the developer. This often results in a conflict when trying to mix XML documents from different XML applications. This XML carries HTML table information:
<table>
<tr>
 <td>Apples</td>
 <td>Bananas</td>
 </tr>
</table>
This XML carries information about a table (a piece of furniture):
<table>
<name>African Coffee Table</name>
<width>80</width>
<length>120</length>
 </table>
If these XML fragments were added together, there would be a name conflict. Both contain a <table> element, but the elements have different content and meaning.An XML parser will not know how to handle these differences.
Solving the Name Conflict Using a Prefix
When using prefixes in XML, a so-called namespace for the prefix must be defined. The namespace is defined by the xmlns attribute in the start tag of an element. The namespace declaration has the following syntax.
xmlns:prefix="URI".
<root>
<h:table xmlns:h="http://www.w3.org/TR/html4/">
<h:tr> <h:td>Apples</h:td> <h:td>Bananas</h:td> </h:tr>
</h:table>
<f:table xmlns:f="http://www.w3schools.com/furniture">
<f:name>African Coffee Table</f:name>
<f:width>80</f:width>
<f:length>120</f:length>
</f:table>
</root>

4. Explain in detail the XML schema, built in and user defined data type in detail.
XML Schema is an XML-based alternative to DTD.
An XML schema describes the structure of an XML document.
The XML Schema language is also referred to as XML Schema Definition (XSD).
XML Schema:
	XML Schema
	Defines a number of simple data types, including
	Range of allowed values
	How values are represented as strings
	Provides facilities for defining data structures in terms of simple types or other data structures
	Can also be used in place of XML DTD
	Built-in data types

	Types corresponding to Java primitive types: boolean, byte,int, double, etc.
	String representations much as Java
	Exception: can use 0 for false, 1 for true
	No char; use string instead
	XML DTD types (ID, CDATA, etc.)
	Built-in data types
	integer and decimal (arbitrary precision)
	dates, times, and related subtypes
	URLs
	XML namespace qualified names
	binary data
	some restricted forms of the above, e.g., nonNegativeInteger
	XML Schema namespace defining built-in types is called the document namespace
	Standard prefix for this namespace is xsd

		Plus Java primitive types (int, etc.)
	Mapping from XML Schema data types to Java:
	Primitives: one-for-one mapping
	date, time, dateTime: map to Calendar
	most others: map to String
	Elements in the document namespace can declare user-defined data types
	 Two XML Schema data types:
	Complex: requires markup to represent within an XML document
	Simple: can be represented as character data
	User-defined data types are declared in the types element of a WSDL
	Example: ExchangeValue
	In WSDL, user-defined types can be used
	To define other data types within types element
	To specify data types of parameters and return values in message elements

Restrictions for Datatypes

enumeration	Defines a list of acceptable values
fractionDigits	Specifies the maximum number of decimal places allowed. Must be equal to or greater than zero
length	Specifies the exact number of characters or list items allowed. Must be equal to or greater than zero
maxExclusive	Specifies the upper bounds for numeric values (the value must be less than this value)
maxInclusive	Specifies the upper bounds for numeric values (the value must be less than or equal to this value)
maxLength	Specifies the maximum number of characters or list items allowed. Must be equal to or greater than zero
minExclusive	Specifies the lower bounds for numeric values (the value must be greater than this value)
minInclusive	Specifies the lower bounds for numeric values (the value must be greater than or equal to this value)
minLength	Specifies the minimum number of characters or list items allowed. Must be equal to or greater than zero
pattern	Defines the exact sequence of characters that are acceptable
totalDigits	Specifies the exact number of digits allowed. Must be greater than zero
whiteSpace	Specifies how white space (line feeds, tabs, spaces, and carriage returns) is handled
Inclusive and Exclusive:

<xs:element name="age">
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="0"/>
 <xs:maxExclusive value="120"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
Enumeration:
<xs:element name="car">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Audi"/>
 <xs:enumeration value="Golf"/>
 <xs:enumeration value="BMW"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
Pattern:
<xs:element name="letter">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[a-z]"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

Minlength and Maxlength:
<xs:element name="password">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="5"/>
 <xs:maxLength value="8"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>

5. Describe the significance and working of WSDL with an example.
Describing Web Services:WSDL.
Web Service  Is a server application uses HTTP to accept and return SOAP documents, where content of the document is specified by a WSDL document that uses XML schema to define data types.
All the elements in the content of definitions optional Most WSDL document contain types element followed by atleast one of these elements:
•	message
•	portType
•	binding
•	Service
•	Types element defines data types used by input and output parameter

	•message is to define an input parameter list for an operation or to the value returned by the operation •One part element for each parameter
	•This associates a name and a data type with each parameter
	•portType element defines an abstract level the operation of a web service •The content of this element consist of an operation elements one for each operation •Names of these elements are not required to be unique •The content of an operation will be one input and one output this represents a form of an operation called request-response form used by web services.
	Binding element specify a way in which the operations specified abstractly in portType can be accessed remotely by a client •The content of each operation element is a pair of input and output element with no attribute specification. •Contain a single soap:body element provides communication details .Whether or not the associated message should be encoded •What form of encoding should be used
	Each operation element contains soap: operation element •Used for various purposes depending on WS implementation •An empty string specified as the value for this field it means it has not been used by the web service

	Service element provides a overall name for the web service Contains one or more port elements each associates a binding with an internet address The address is specified by including soap: address element in the content of port
	 	 •Location attribute replaced with absolute URL by the server when the web services WSDL URL is browsed
	types uses XML Schema to define data types  message elements define parameter lists and return types using types and XML Schema
	portType defines abstract API for operation‟s using message‟s
	binding specifies how message‟s will be communicated and operation‟s called
	service associates URL with binding

6. Describe the major elements of SOAP.
SOAP is a simple XML based protocol to let applications exchange information over HTTP.
Or more simply: SOAP is a protocol for accessing a Web Service.
SOAP Building Blocks
A SOAP message is an ordinary XML document containing the following elements:
• A required Envelope element that identifies the XML document as a SOAP message
• An optional Header element that contains header information
• A required Body element that contains call and response information
• An optional Fault element that provides information about errors that occurred while processing the message
All the elements above are declared in the default namespace for the SOAP envelope:
http://www.w3.org/2001/12/soap-envelope
and the default namespace for SOAP encoding and data types is:
http://www.w3.org/2001/12/soap-encoding

Syntax Rules
Here are some important syntax rules:
• A SOAP message MUST be encoded using XML
• A SOAP message MUST use the SOAP Envelope namespace
• A SOAP message MUST use the SOAP Encoding namespace
• A SOAP message must NOT contain a DTD reference
• A SOAP message must NOT contain XML Processing Instructions
Skeleton SOAP Message
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Header>
...
...
</soap:Header>
<soap:Body>
...
...
<soap:Fault>
...
...
</soap:Fault>
</soap:Body>
</soap:Envelope>
SOAP ElementS:
SOAP Envelope Element
The mandatory SOAP Envelope element is the root element of a SOAP message.
The required SOAP Envelope element is the root element of a SOAP message. It defines the XML document as a SOAP message.
Note the use of the xmlns:soap namespace. It should always have the value of:
http://www.w3.org/2001/12/soap-envelope
and it defines the Envelope as a SOAP Envelope:
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
...
Message information goes here
...
</soap:Envelope>
The xmlns:soap Namespace
A SOAP message must always have an Envelope element associated with the "http://www.w3.org/2001/12/soap-envelope" namespace.
If a different namespace is used, the application must generate an error and discard the message.
The encodingStyle Attribute
The SOAP encodingStyle attribute is used to define the data types used in the document. This attribute may appear on any SOAP element, and it will apply to that element's contents and all child elements. A SOAP message has no default encoding.
Syntax
soap:encodingStyle="URI"

SOAP Header Element
The optional SOAP Header element contains header information.

The optional SOAP Header element contains application specific information (like authentication, payment, etc) about the SOAP message. If the Header element is present, it must be the first child element of the Envelope element.
Note: All immediate child elements of the Header element must be namespace-qualified.

<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Header>
<m:Trans
xmlns:m="http://www.w3schools.com/transaction/"
soap:mustUnderstand="1">234</m:Trans>
</soap:Header>
...
...
</soap:Envelope>
The example above contains a header with a "Trans" element, a "mustUnderstand" attribute value of "1", and a value of 234.
SOAP defines three attributes in the default namespace ("http://www.w3.org/2001/12/soap-envelope"). These attributes are: actor, mustUnderstand, and encodingStyle. The attributes defined in the SOAP Header defines how a recipient should process the SOAP message.
The actor Attribute
A SOAP message may travel from a sender to a receiver by passing different endpoints along the message path. Not all parts of the SOAP message may be intended for the ultimate endpoint of the SOAP message but, instead, may be intended for one or more of the endpoints on the message path.
The SOAP actor attribute may be used to address the Header element to a particular endpoint.
	Syntax soap:actor="URI"

Example
<?xml version="1.0"?>
The mustUnderstand Attribute
The SOAP mustUnderstand attribute can be used to indicate whether a header entry is mandatory or optional for the recipient to process.
If you add "mustUnderstand="1" to a child element of the Header element it indicates that the receiver processing the Header must recognize the element. If the receiver does not recognize the element it must fail when processing the Header.
	Syntax soap:mustUnderstand="0|1"

SOAP Body Element
The mandatory SOAP Body element contains the actual SOAP message.
The required SOAP Body element contains the actual SOAP message intended for the ultimate endpoint of the message.
Immediate child elements of the SOAP Body element may be namespace-qualified. SOAP defines one element inside the Body element in the default namespace ("http://www.w3.org/2001/12/soap-envelope"). This is the SOAP Fault element, which is used to indicate error messages.
<?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
<m:GetPrice xmlns:m="http://www.w3schools.com/prices">
<m:Item>Apples</m:Item>
</m:GetPrice>
</soap:Body>
</soap:Envelope>
The example above requests the price of apples. Note that the m:GetPrice and the Item elements above are application-specific elements. They are not a part of the SOAP standard.
	A SOAP response could look something like this: <?xml version="1.0"?>
<soap:Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
<soap:Body>
<m:GetPriceResponse xmlns:m="http://www.w3schools.com/prices">
<m:Price>1.90</m:Price>
</m:GetPriceResponse>
</soap:Body>
</soap:Envelope>

SOAP Fault Element
The optional SOAP Fault element is used to hold error and status information for a SOAP message.
An error message from a SOAP message is carried inside a Fault element.
If a Fault element is present, it must appear as a child element of the Body element. A Fault element can only appear once in a SOAP message.
The SOAP Fault element has the following sub elements:
	Sub Element
	Description

	<faultcode>
	A code for identifying the fault

	<faultstring>
	A human readable explanation of the fault

	<faultactor>
	Information about who caused the fault to happen

	<detail>
	Holds application specific error information related to the Body element

SOAP Fault Codes
	The faultcode values defined below must be used in the faultcode element when describing faults: Error
	Description

	VersionMismatch
	Found an invalid namespace for the SOAP Envelope element

	MustUnderstand
	An immediate child element of the Header element, with the mustUnderstand attribute set to "1", was not understood

	Client
	The message was incorrectly formed or contained incorrect information

	Server
	There was a problem with the server so the message could not proceed

7. Explain the creation of a java web service Client in detail with examples.
Writing a Java Web service Client
· Goal: write a JSP-based client
· Input: currency and value
· Output: table of equivalent values
· Use wscompile tool to develop client
[image: Description: ConvertHTML]
· Input xml document for wscompile tool
· Configuration file input to wscompile to create client
· Child element wsdl specifies the URL of a WSDL document
[image:]
· Wscompile generate proxy object
· Proxy object is a java object called on by a client software in order to access the web service
JWSDP: Client
· Directory structure (wscompile generates content of classes and src)
· Run wscompile
[image:]
· Run wscompile
Wscompile –gen –keep –d classes –s src config.xml
· Wscompile tool creates a class implementing the interface
· Interface is shared between webservice server and clients via the wsdl document.
· On server side the class implementing the interface is written
· On client side the interface is automatically generated by wscompile tool
Structs will be represented as JavaBeans classes, regardless of how they are defined on the server
[image:]
· Bean obtaining and calling proxy object:
· JSP document convert.jspx calls on javaBeans class to perform currency conversion and displays result in HTML table
· Document is placed in ConverterClient directory
[image:]
· JSP document using the bean:
[image:]

8. Illustrate the principles of WSDL, XML and SOAP and their interaction between them in web service applications
XML:
An XML document consists of
a. Markup
i. Tags, which begin with < and end with >
ii. References, which begin with & and end with ;
1. Character, e.g.
2. Entity, e.g. <
b. Character data: everything not markup

SOAP:
Simple Object Access Protocol (SOAP) is a protocol based on XML. It is used by the web services for exchange of information. The Client- Server communication is based on RPC. The HTTP does not design to handle the distributed objects that are required by the RPC. Hence another application protocol is build over HTTP which popularly known as SOAP. SOAP allows talking different applications that are running in two different operating systems.

Describing Web Services:WSDL.
Web Service Is a server application uses HTTP to accept and return SOAP documents, where content of the document is specified by a WSDL document that uses XML schema to define data types.
All the elements in the content of definitions optional Most WSDL document contain types element followed by atleast one of these elements:
· message
· portType
· binding
· Service
· Types element defines data types used by input and output parameter

	types uses XML Schema to define data types message elements define parameter lists and return types using types and XML Schema
	portType defines abstract API for operation‟s using message‟s
	binding specifies how message‟s will be communicated and operation‟s called
	service associates URL with binding

9. i. Explain with an example about the various web service technologies. (NOV/DEC 2015)
ii. Write an example for default XML Namespace and create the XSLT with font, color, size and bgcolor. (NOV/DEC 2015)
(i)

The standard technologies for implementing the SOA patterns with Web services are Web Services Description Language (WSDL), Universal Description, Discovery & Integration (UDDI).and Simple Object Access Protocol (SOAP).

WSDL, UDD1, and SOAP are the three core technologies most often used to implement Web services. WSDL provides a mechanism to describe a Web service. UDDI provides a mechanism to advertise and discover a Web service. And SOAP provides a mechanism for clients and services to communicate. Figure 3-4 shows these technologies mapped to the SOA.

(Description)WSDL

WSDL is an XML language that describes a Web service. A WSDL document describes

1.The functionality a Web service,
2.How the web service communicates,
3.Where the web service resides.

1.The functionality a Web service.

The wsdl document describes the interface of a Web service. This description specifies which operations and the functionalities the service supports. It also defines the format of the messages that are exchanged to communicate with the web service.

2.How it communicates

This part specifies the technical details of how to communicate with the service. It shows how the input and output messages should be packaged into a message. It also shows how the message should be structured and how the data should be encoded.

3.Where the web service can be found.

This part specifies the URL of a web service.

The WSDL document contains three parts which describes everything needed to call a Web service. This docusment / file can be compiled into application code, which a client application uses to access the Web service. This application code is called a client proxy. This means that WSDL document / file compiles into a proxy client. The client application calls the client proxy, and the proxy constructs the messages and manages the communication on behalf of the client application.

Advertising and Discovery (UDDI)

UDDI is a registry for Web services. UDDI provides a mechanism to advertise and discover Web services. UDDI manages information about services and service providers.

Consumers can search the registry to find service types that match their requirements, and they can search for service providers that support these service types.

A service provider registers its business and all the services that it offers.

UDDI makes it easy to find service implementations that support industry standards. Users can search the registry for services by service type or by service provider. Developers use the UDDI registry at development phase of software application development to locate suitable services that can be used in their applications.

Communication (SOAP)

Simple Object Access Protocol (SOAP) is an XML protocol. It is used by client applications to communicate with Web services. SOAP is a simple, consistent, and extensible mechanism allowing a client application to send an XML message to any other application.

SOAP implements an envelope for sending an XML message. We put an XML message into an envelope and send it across the networks. In other words SOAP envelope is a container for the XML message.

A SOAP envelope is transported by various communication protocols. But, the most common way to transfer SOAP messages is to use HTTP. Other Web protocols commonly used are SMTP and FTP.

soap envelope

A SOAP message consists of two parts.

The first part also called as SOAP header, includes system level information. System level information includes security credentials, transaction context, message correlation information, session identifiers.

The SOAP body contains the message the information that is being sent.

The contents of the message conform to the input and output messages specifications defined in the WSDL document. The WSDL document includes specs of the transport protocol which should be used to transfer the message.

(ii)

	

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml-stylesheet type="text/xsl" href="tutorials.xsl"?>
<tutorials>
<tutorial>
<name>XML Tutorial</name>
<url>http://www.quackit.com/xml/tutorial</url>
</tutorial>
<tutorial>
<name>HTML Tutorial</name>
<url>http://www.quackit.com/html/tutorial</url>
</tutorial>
</tutorials>

	

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<html>
<head>
<title>XML XSL Example</title>
<style type="text/css">
body
{
margin:10px;
background-color:#ccff00;
font-family:verdana,helvetica,sans-serif;
}

.tutorial-name
{
display:block;
font-weight:bold;
}

.tutorial-url
{
display:block;
color:#636363;
font-size:small;
font-style:italic;
}
</style>
</head>
<body>
<h2>Cool Tutorials</h2>
<p>Hey, check out these tutorials!</p>
 <xsl:apply-templates/>
</body>
</html>
</xsl:template>

<xsl:template match="tutorial">
 <xsl:value-of select="name"/>
 <xsl:value-of select="url"/>
</xsl:template>

</xsl:stylesheet>

10. i. Analogous to the calculator service, implement a simple SOAP web service (NOV/DEC 2015)
 ii. Write short notes on Java web services and its benefits. (NOV/DEC 2015)
(i)
Creating Web Service:
package pac1;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;

@WebService(serviceName = "calculator")
public class calculator {

 /**
 * This is a sample web service operation
 */
 @WebMethod(operationName = "hello")
 public String hello(@WebParam(name = "name") String txt) {
 return "Hello " + txt + " !";
 }

 /**
 * Web service operation
 */
 @WebMethod(operationName = "add")
 public int add(@WebParam(name = "a") int a, @WebParam(name = "b") int b) {
 //TODO write your implementation code here:
 return a+b;
 }

 /**
 * Web service operation
 */
 @WebMethod(operationName = "sub")
 public int sub(@WebParam(name = "a") int a, @WebParam(name = "b") int b) {
 //TODO write your implementation code here:
 return a-b;
 }

 /**
 * Web service operation
 */
 @WebMethod(operationName = "mul")
 public int mul(@WebParam(name = "a") int a, @WebParam(name = "b") int b) {
 //TODO write your implementation code here:
 return a*b;
 }

 /**
 * Web service operation
 */
 @WebMethod(operationName = "div")
 public int div(@WebParam(name = "a") int a, @WebParam(name = "b") int b) {
 //TODO write your implementation code here:
 return a/b;
 }
}

Web services client
<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE html>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title> Calculator
 </title>
 </head>
 <body>
 <%
 try {
	pac1.Calculator_Service service = new pac1.Calculator_Service();
	pac1.Calculator port = service.getCalculatorPort();
	 // TODO initialize WS operation arguments here
	int a = 10;
	int b = 20;
	// TODO process result here
	int result = port.add(a, b);
	out.println("Result = "+result);
 } catch (Exception ex) {
	// TODO handle custom exceptions here
 }

 %> <%-- start web service invocation --%><hr/>
 <%
 try {
	pac1.Calculator_Service service = new pac1.Calculator_Service();
	pac1.Calculator port = service.getCalculatorPort();
	 // TODO initialize WS operation arguments here
	int a = 20;
	int b = 10;
	// TODO process result here
	int result = port.sub(a, b);
	out.println("Result = "+result);
 } catch (Exception ex) {
	// TODO handle custom exceptions here
 }
 %>
 <%-- end web service invocation --%><hr/>
 <%-- start web service invocation --%><hr/>
 <%
 try {
	pac1.Calculator_Service service = new pac1.Calculator_Service();
	pac1.Calculator port = service.getCalculatorPort();
	 // TODO initialize WS operation arguments here
	int a = 10;
	int b = 20;
	// TODO process result here
	int result = port.mul(a, b);
	out.println("Result = "+result);
 } catch (Exception ex) {
	// TODO handle custom exceptions here
 }
 %>
 <%-- end web service invocation --%><hr/>
 <%-- start web service invocation --%><hr/>
 <%
 try {
	pac1.Calculator_Service service = new pac1.Calculator_Service();
	pac1.Calculator port = service.getCalculatorPort();
	 // TODO initialize WS operation arguments here
	int a = 20;
	int b = 10;
	// TODO process result here
	int result = port.div(a, b);
	out.println("Result = "+result);
 } catch (Exception ex) {
	// TODO handle custom exceptions here
 }
 %>
 </body>
</html>

[image:]OUTPUT

(ii)

Connecting Different Applications: Web Services allows different applications to talk to each other and share data and services among themselves. Other applications can also use the services of the web services. For example VB or .NET application can talk to java web services and vice versa. So, Web services is used to make the application platform and technology independent.

Standardized Protocol: Web Services uses standardized industry standard protocol for the communication. All the four layers (Service Transport, XML Messaging, Service Description and Service Discovery layers) uses the well defined protocol in the Web Services protocol stack. This standardization of protocol stack gives the business many advantages like wide range of choices, reduction in the cost due to competition and increase in the quality.

Low Cost of communication: Web Services uses SOAP over HTTP protocol for the communication, so you can use your existing low cost internet for implementing Web Services. This solution is much less costly compared to proprietary solutions like EDI/B2B.

Support for Other communication means: Beside SOAP over HTTP, Web Services can also be implemented on other reliable transport mechanisms. So, it gives flexibility use the communication means of your requirement and choice. For example Web Services can also be implemented using ftp protocol (Web services over FTP).

Loosely Coupled Applications: Web Services are self-describing software modules which encapsulates discrete functionality. Web Services are accessible via standard Internet communication protocols like XML and SOAP. These Web Services can be developed in any technologies (like c++, Java, .NET, PHP, Perl etc.) and any application or Web Services can access these services. So, the Web Services are loosely coupled application and can be used by applications developed in any technologies. For example, I have heard of people developing Web Services using Java technologies and using the Web Services in VB or .NET applications.

Web Services Sharing: These days due to complexness of the business, organizations are using different technologies like EAI, EDI, B2B, Portals etc. for distributing computing. Web Services supports all these technologies, thus helping the business to use existing investments in other technologies.

Web Services are Self Describing: Web Services are self describing applications, which reduces the software development time. This helps the other business partners to quickly develop application and start doing business. This helps business to save time and money by cutting development time.

Automatic Discovery: Web Services automatic discovery mechanism helps the business to easy find the Service Providers. This also helps your customer to find your services easily. With the help of Web Services your business can also increase revenue by exposing their own Web Services available to others.

[bookmark: _GoBack]Business Opportunity: Web Services has opened the door to new business opportunities by making it easy to connect with partners.
St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 	129

image2.png

image3.png

image4.png
B sbmit]

5015

= € [[} filey//D/NOTES/sumhtml

image5.png

image6.png
Document.

Root slement:

<htmi>
T
[1

Elemert; Elemert;

<head> <body>

Elemert; AfEribute Elemert; Elemert;
<itle> “href” <a> <hi>
Text Tert Text

"y title” “Hy link” "My header”

image7.wmf

image8.wmf

image9.wmf

image10.png
This is another paragraph.
This is a new paragraph.

HEADING 2

[object HTMLScriptElement]
true
true

P
HEADING 2
This is a new paragraph.

image11.png
property names declarations

p{

/

=
g“kground-co%«: Tyellow]

selector string

declaration block

image12.png
<html xmins="HtLp://wuw.ws.org/ 1399/ xhtnl >
<head>
<title>
Selectors.html
</title>
<link rel="stylesheet" type="text/css" href="sel-demo.css" />
</head>
<body>
<hl>Selector Tests</hl>
<p id="pl" class="takeNote">
Paragraph with id="pl" and class="takeNote"
</p>

image13.png
<p id="p2" class="special">
second paragraph. This span
belongs to classes takeNote, special, and cool.

Span's within this list are in small-cap</span|
style.

This item spaces letters.

</p>
<p id="p3">
This paragraph (id="p3") contains a
hyperlink.

This item contains a span but does not display it in
small capes,nor does it space letters.

</p>
</body>
</htmls

image14.png
h1.h2.h3.h4.h5.h6 { background-color : purple }
* { font-weight : bold }

#pl, #p3 { background-color : aqua }

#pl, takeNote { font-style : italic }
span.special { font-size : x-large }

a:link { color : black }

avisited { color : yellow }

ahover { color : green }

aactive { color : red }

ul span { font-variant : small-caps }
ul ol I { letter-spacing : lem }

image15.png
©.prop = true; prop is Boolean
o.prop = "true prop Is now String
o.prop = 1; prop Is now Number

image16.wmf

image17.png
Create an object o1

image18.png
new Object() cConstructorand argument list

image19.wmf

image20.wmf

image21.png
ry(Code block for which we want to catch
‘some exceptions

)
catch (SomeException e1
' pronen _Each catch deals with a class
of exceptions, determined by
catch (AnotherException €2) {e——the run-time system based
on the type of the argument

finall
"8l { «—_The code in finally is executed always after
) leaving the try-block

image22.jpeg
Byte Stream

InputStream OutputStream

image23.jpeg
Character $tream

Reader Writer

image24.gif
Object of BufferedReader class

BufferedReader br = new BufferedReader(new
InputStreamReader (System.in));

Console inputs are read

InputStreamReader is subclass of from this.

Reader class. It converts bytes to
character.

image25.emf

image26.emf

image27.emf

image28.wmf

image29.wmf

image30.wmf

image31.emf

image32.png
Client 1 Server Client 2

l HTTP Request
Advancing HTTP Request
Time HTTP Response

Session D = 4235 HTTP Response
Session D = 9168

HTTP Request
Session D = 9168

HTTP Response

HTTP Request
Session D = 4235

HTTP Response

HTTP Request
Session D = 9168

HTTP Response

HTTP Request
Session D = 4235

HTTP Response

image33.png
HiTP HiTP
Request | |Response

‘ Web Server ‘

@ ®

Request! | | Modified
Response | | Response
Objects Object

Servlet

image34.png
Servlet Life Cycle

instantia
& call init()

called once) ini)

“thread 1 - client request —
Hhrads-seatzasesy

called once)

ready to serve requests

handle multiple
requests and send
response.

service()

image35.wmf

image36.jpeg
SO oo
S s

image37.png

image38.png
BZ convert.jspx -

Comparative Values

[Currency

[Dollars

Value

$59,034.34

[Buros

€44,088.38

[Yen

[#6,054,561.91

image39.wmf

image40.wmf

image41.png
public class ExchangeValues {
protected double dollars;
protected double euros;
protected double yen;

public double getDollars() {
return dollars;

¥

public void setDollars(double dollars) {
this.dollars = dollars;

¥

image42.wmf

image43.wmf

image44.png
m@ it/ localhost 3084 web_Clietindesp

File Edit View Favorites Tools Help

Hello World!

Addition Result is = 30

Subtraction Result is = 10

Multiplication Result is = 100

Division Result is = 10

