
UNIT-II
REQUIREMENTS ANALYSIS AND SPECIFICATION

The requirements for a system are the descriptions of what the system should do the
services that it provides and the constraints on its operation.

 User requirements are statements, in a natural language plus diagrams, of what

services the system is expected to provide to system users and the constraints
under which it must operate.

 System requirements are more detailed descriptions of the software system’s

functions, services, and operational constraints. The system requirements
document (sometimes called a functional specification) should define exactly
what is to be implemented. It may be part of the contract between the system
buyer and the software developers.

FUNCTIONAL AND NON-FUNCTIONAL REQUIREMENTS

Software system requirements are often classified as functional requirements or
nonfunctional requirements:
Functional requirements These are statements of services the system should provide,

how the system should react to particular inputs, and how the system should behave in
particular situations. In some cases, the functional requirements may also explicitly
state what the system should not do.

 Functional system requirements vary from general requirements covering what
the system should do to very specific requirements reflecting local ways of
working or an organization’s existing systems.

 Imprecision in the requirements specification is the cause of many software
engineering problems.

 The functional requirements specification of a system should be both complete
and consistent. Completeness means that all services required by the user should
be defined. Consistency means that requirements should not have contradictory
definitions.

Non-functional requirements These are constraints on the services or functions offered

by the system. They include timing constraints, constraints on the development process,
and constraints imposed by standards. Non-functional requirements often apply to the
system as a whole, rather than individual system features or services.

 These are requirements that are not directly concerned with the specific services
delivered by the system to its users. They may relate to emergent system
properties such as reliability, response time, and store occupancy.

 Although it is often possible to identify which system components implement
specific functional requirements, it is often more difficult to relate components to
non-functional requirements. The implementation of these requirements may be
diffused throughout the system.

 There are two reasons for this:

 Non-functional requirements may affect the overall architecture of a
system rather than the individual components.

 A single non-functional requirement, such as a security requirement, may
generate a number of related functional requirements that define new
system services that are required.

 Product requirements These requirements specify or constrain the behavior of

the software.
 Organizational requirements These requirements are broad system

requirements derived from policies and procedures in the customer’s and
developer’s organization.

 External requirements This broad heading covers all requirements that are

derived from factors external to the system and its development process.

Property Measure

Speed Processed trasactions/second user/Event
response time Screen refresh time

Size K Bytes Number of RAM chips
Ease of Use Training time

Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence

Performance
requirements

Space
requirements

Usability
requirements

Efficiency
requirements

Reliability
requirements

Portability
requirements

Interoperability
requirements

Ethical
requirements

Legislative
requirements

Implementation
requirements

Standards
requirements

Delivery
requirements

Safety
requirements

Privacy
requirements

Product
requirements

Organizational
requirements

External
requirements

Non-functional
requirements

Availability
Robustness Time to restart after failure

Percentage of events causing failure
Probability of data corruption on failure

Probability Percentage of target dependent statement
Number of target systems

SOFTWARE REQUIREMENT SPECIFICATION(SRS)

 The requirements document is the official statement of what is required of the
system developers.

 Should include both a definition of user requirements and a specification of the
system requirements.

 It is NOT a design document. As far as possible, it should set out WHAT the
system should do rather than HOW it should do it

 Defines a generic structure for a requirements document that must be
instantiated for each specific system.

• Introduction.
• General description.
• Specific requirements.
• Appendices.
• Index.

 Requirement Document Structure
• Preface
• Introduction
• Glossary
• User requirements definition
• System architecture
• System requirements specification
• System models
• System evolution
• Appendices
• Index

 The information that is included in a requirements document depends on the
type of software being developed and the approach to development that is to be
used.

REQUIREMENTS SPECIFICATION

 Requirements specification is the process of writing down the user and system
requirements in a requirements document. Ideally, the user and system
requirements should be clear, unambiguous, easy to understand, complete, and
consistent.

 The user requirements for a system should describe the functional and
nonfunctional requirements so that they are understandable by system users who
don’t have detailed technical knowledge.

 System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail
and explain how the user requirements should be provided by the system.

 The system requirements should simply describe the external behavior of the system
and its operational constraints. They should not be concerned with how the system
should be designed or implemented.

 At the level of detail required to completely specify a complex software system, it is
practically impossible to exclude all design information. There are several reasons
for this:

 The system requirements are organized according to the different sub-

systems that make up the system.

 Systems must interoperate with existing systems, which constrain the design
and impose requirements on the new system.

 The use of a specific architecture to satisfy non-functional requirements may

be necessary.

Natural language specification

 To minimize misunderstandings when writing natural language requirements, the
following guidelines are provided,

 Invent a standard format and ensure that all requirement definitions adhere
to that format.

 Use language consistently to distinguish between mandatory and desirable
requirements. Mandatory requirements are requirements that the system
must support and are usually written using ‘shall’. Desirable requ irements
are not essential and are written using ‘should’.

 Use text highlighting (bold, italic, or color) to pick out key parts of the

requirement.
 Do not assume that readers understand technical software engineering

language. It is easy for words like ‘architecture’ and ‘module’ to be
misunderstood. Therefore, use of jargon, abbreviations, and acronyms are
avoided.

 The rationale should explain why the requirement has been included. It is
particularly useful when requirements are changed as it may help decide
what changes would be undesirable.

Structured specifications

When a standard form is used for specifying functional requirements, the following
information should be included:

 A description of the function or entity being specified.
 A description of its inputs and where these come from.
 A description of its outputs and where these go to.
 Information about the information that is needed for the computation or

other entities in the system that are used (the ‘requires’ part).
 A description of the action to be taken.

 If a functional approach is used, a pre-condition setting out what must be
true before the function is called, and a post-condition specifying what is
true after the function is called.

 A description of the side effects (if any) of the operation.

REQUIREMENT ENGINEERING:

Requirement Engineering provides the appropriate mechanism for understanding what
the customer wants, analyzing need, assessing feasibility, negotiating a reasonable
solution, specifying the solution unambiguously, validating the specification and
managing the requirements as they are transformed into an operational system.
Guidelines principles for requirement engineering:

 Understand the problem before beginning the analysis model.

 Develop prototypes that enable a user to understand how human/machine
interaction will occur.

 Record the origin of and the reason for each and every requirements.

 Use multiple views of requirements.
 Rank the requirements and eliminate the ambiguity.

Requirement Engineering Process:

 Inception

 During inception, the requirements engineer asks a set of questions to establish…
 A basic understanding of the problem
 The people who want a solution
 The nature of the solution that is desired
 The effectiveness of preliminary communication and collaboration

between the customer and the developer
 Elicitation

 Elicitation may be accomplished through two activities

 Collaborative requirements gathering
 Quality function deployment

 Elaboration

 During elaboration, the software engineer takes the information obtained
during inception and elicitation and begins to expand and refine it

 Elaboration focuses on developing a refined technical model of software
functions, features, and constraints

 Negotiation

 During negotiation, the software engineer reconciles the conflicts between
what the customer wants and what can be achieved given limited
business resources

 Requirements are ranked (i.e., prioritized) by the customers, users, and
other stakeholders

 Risks associated with each requirement are identified and analyzed

 Specification

 A specification is the final work product produced by the requirements
engineer

 It is normally in the form of a software requirements specification
 It serves as the foundation for subsequent software engineering activities
 It describes the function and performance of a computer-based system

and the constraints that will govern its development
 Validation

 During validation, the work products produced as a result of
requirements engineering are assessed for quality

 The specification is examined to ensure that
• all software requirements have been stated unambiguously
• inconsistencies, omissions, and errors have been detected and

corrected
• the work products conform to the standards established for the

process, the project, and the product
 The formal technical review serves as the primary requirements validation

mechanism
• Members include software engineers, customers, users, and other

stakeholders
 Requirements Management

 During requirements management, the project team performs a set of
activities to identify, control, and track requirements and changes to the
requirements at any time as the project proceeds

 Each requirement is assigned a unique identifier
 The requirements are then placed into one or more traceability tables

FEASIBILITY STUDY:

 The aims of a feasibility study are to find out whether the system is worth

implementing and if it can be implemented, given the existing budget and
schedule.

 The purpose of feasibility study is not to solve the problem, but to
determine whether the problem is worth solving. This helps to decide
whether to proceed with the project or not.

 The input to the feasibility study is a set of preliminary business requirements,
an outline description of the system and how the system is intended to support
business processes. The results of the feasibility study should be a report that
recommends whether or not it is worth carrying on with the requirements
engineering and system development process.

http://www.projectsmart.co.uk/elements-of-a-good-feasibility-study.html

 Issues addressed by feasibility study

 Gives focus to the project and outline alternatives.
 Narrows business alternatives
 Identifies new opportunities through the investigative process.
 Identifies reasons not to proceed.
 Enhances the probability of success by addressing and mitigating factors

early on that could affect the project.
 Provides quality information for decision making.
 Provides documentation that the business venture was thoroughly

investigated.
 Helps in securing funding from lending institutions and other monetary

sources.
 Helps to attract equity investment.

 The feasibility study is a critical step in the business assessment process. If
properly conducted, it may be the best investment you ever made Carrying out a
feasibility study involves information assessment, information collection and
report writing.

REQUIREMENTS ELICITATION AND ANALYSIS

The process activities are:
Requirements discovery: This is the process of interacting with stakeholders of the

system to discover their requirements. Domain requirements from stakeholders and
documentation are also discovered during this activity.

Requirements classification and organization: This activity takes the unstructured

collection of requirements, groups related requirements, and organizes them into
coherent clusters. The most common way of grouping requirements is to use a model of
the system architecture to identify sub-systems and to associate requirements with each
sub-system.

Requirements prioritization and negotiation: Inevitably, when multiple stakeholders

are involved, requirements will conflict. This activity is concerned with prioritizing
requirements and finding and resolving requirements conflicts through negotiation.

Requirements specification: The requirements are documented and input into the next

round of the spiral.

Eliciting and understanding requirements from system stakeholders is a difficult
process for several reasons:

 Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they want
the system to do; they may make unrealistic demands because they don’t know
what is and isn’t feasible.

 Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Requirements engineers, without
experience in the customer’s domain, may not understand these requirements.

 Different stakeholders have different requirements and they may express these
in different ways. Requirements engineers have to discover all potential sources
of requirements and discover commonalities and conflict.

 Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to increase
their influence in the organization.

 The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from new
stakeholders who were not originally consulted.

Requirements discovery

Requirements discovery (sometime called requirements elicitation) is the process of
gathering information about the required system and existing systems, and distilling
the user and system requirements from this information.

Sources of information during the requirements discovery phase include
documentation, system stakeholders and specifications of similar systems.

Stakeholders range from end-users of a system through managers to external
stakeholders
such as regulators, who certify the acceptability of the system.

For example, system stakeholders for the mental healthcare patient information
system include:

 Patients whose information is recorded in the system.
 Doctors who are responsible for assessing and treating patients.
 Nurses who coordinate the consultations with doctors and administer some

treatments.
 Medical receptionists who manage patients’ appointments.
 IT staff who are responsible for installing and maintaining the system.
 A medical ethics manager who must ensure that the system meets current

ethical guidelines for patient care.
 Healthcare managers who obtain management information from the system.
 Medical records staff who are responsible for ensuring that system

information can be maintained and preserved, and that record keeping
procedures have been
properly implemented.

Interviewing

The requirements engineering team puts questions to stakeholders about the system
that they currently use and the system to be developed. Requirements are derived
from the answers to these questions.

Interviews may be of two types:

 Closed interviews, where the stakeholder answers a pre-defined set of
questions.

 Open interviews, in which there is no pre-defined agenda. The requirements
engineering team explores a range of issues with system stakeholders and
hence develop a better understanding of their needs.

It can be difficult to elicit domain knowledge through interviews for two reasons:

 All application specialists use terminology and jargon that are specific to a
domain. It is impossible for them to discuss domain requirements without
using this terminology. They normally use terminology in a precise and
subtle way that is easy for requirements engineers to misunderstand.

 Some domain knowledge is so familiar to stakeholders that they either find it
difficult to explain or they think it is so fundamental that it isn’t worth
mentioning.

Effective interviewers have two characteristics:

1. They are open-minded, avoid pre-conceived ideas about the requirements, and
are willing to listen to stakeholders. If the stakeholder comes up with surprising
requirements, then they are willing to change their mind about the system.

2. They prompt the interviewee to get discussions going using a springboard
question, a requirements proposal, or by working together on a prototype system.
Saying to people ‘tell me what you want’ is unlikely to result in useful information.
They find it much easier to talk in a defined context rather than in general terms.

Scenarios

A scenario starts with an outline of the interaction. During the elicitation process,
details are added to this to create a complete description of that interaction.

A scenario may include:

 A description of what the system and users expects when the scenario starts.
 A description of the normal flow of events in the scenario.
 A description of what can go wrong and how this is handled.
 Information about other activities that might be going on at the same time.
 A description of the system state when the scenario finishes.

Use cases

Use cases are documented using a high-level use case diagram. The set of use cases
represents all of the possible interactions that will be described in the system
requirements.
Actors in the process, who may be human or other systems, are represented as stick
figures. Each class of interaction is represented as a named ellipse. Lines link the
actors with the interaction. Optionally, arrowheads may be added to lines to show
how the interaction is initiated.
Use cases identify the individual interactions between the system and its users or
other systems. Each use case should be documented with a textual description.
These can then be linked to other models in the UML that will develop the scenario
in more
detail.

Ethnography

Ethnography is an observational technique that can be used to understand
operational processes and help derive support requirements for these processes. An
analyst immerses himself or herself in the working environment where the system
will be used. The day-to-day work is observed and notes made of the actual tasks in
which participants are involved. The value of ethnography is that it helps discover
implicit system requirements that reflect the actual ways that people work, rather
than the formal processes defined by the organization.

Ethnography is particularly effective for discovering two types of requirements:

Requirements that are derived from the way in which people actually work, rather
than the way in which process definitions say they ought to work.
Requirements that are derived from cooperation and awareness of other people’s
activities.

Ethnography can be combined with prototyping

The ethnography informs the development of the prototype so that fewer prototype
refinement cycles are required. Furthermore, the prototyping focuses the
ethnography by identifying problems and questions that can then be discussed with
the ethnographer.

REQUIREMENTS VALIDATION

Requirements validation is the process of checking that requirements actually define
the system that the customer really wants.

The cost of fixing a requirements problem by making a system change is usually
much greater than repairing design or coding errors. The reason for this is that a
change to the requirements usually means that the system design and
implementation must also be changed.

During the requirements validation process, different types of checks should be
carried out on the requirements in the requirements document. These checks
include:

 Validity checks A user may think that a system is needed to perform certain

functions. However, further thought and analysis may identify additional or
different functions that are required. Systems have diverse stakeholders with
different needs and any set of requirements is inevitably a compromise across
the stakeholder community.

 Consistency checks Requirements in the document should not conflict. That

is, there should not be contradictory constraints or different descriptions of
the same system function.

 Completeness checks The requirements document should include

requirements that define all functions and the constraints intended by the
system user.

 Realism checks Using knowledge of existing technology, the requirements

should be checked to ensure that they can actually be implemented. These
checks should also take account of the budget and schedule for the system
development.

 Verifiability To reduce the potential for dispute between customer and
contractor, system requirements should always be written so that they are
verifiable. This means that you should be able to write a set of tests that can
demonstrate that the delivered system meets each specified requirement.

There are a number of requirements validation techniques that can be used
individually or in conjunction with one another:
1. Requirements reviews: The requirements are analyzed systematically by a team
of reviewers who check for errors and inconsistencies.
2. Prototyping: In this approach to validation, an executable model of the system in

question is demonstrated to end-users and customers. They can experiment with
this model to see if it meets their real needs.
3. Test-case generation: Requirements should be testable. If the tests for the

requirements are devised as part of the validation process, this often reveals
requirements problems. If a test is difficult or impossible to design, this usually
means that the requirements will be difficult to implement and should be
reconsidered. Developing tests from the user requirements before any code is
written is an integral part of extreme programming.

REQUIREMENTS MANAGEMENT

Once a system has been installed and is regularly used, new requirements inevitably
emerge. It is hard for users and system customers to anticipate what effects the new
system will have on their business processes and the way that work is done.

There are several reasons why change is inevitable:

1. The business and technical environment of the system always changes after
installation. New hardware may be introduced, it may be necessary to interface the
system with other systems, business priorities may change (with consequent
changes in the system support required), and new legislation and regulations may
be introduced that the system must necessarily abide by.

2. The people who pay for a system and the users of that system are rarely the same
people. System customers impose requirements because of organizational and
budgetary constraints. These may conflict with end-user requirements and, after

delivery, new features may have to be added for user support if the system is to
meet its goals.

3. Large systems usually have a diverse user community, with many users having
different requirements and priorities that may be conflicting or contradictory. The
final system requirements are inevitably a compromise between them and, with
experience, it is often discovered that the balance of support given to different users
has to be changed.

Requirements management planning

Planning is an essential first stage in the requirements management process.

During the requirements management stage, the following is decided

Requirements identification: Each requirement must be uniquely identified so that

it can be cross-referenced with other requirements and used in traceability
assessments.
Change management process :This is the set of activities that assess the impact and

cost of changes. I discuss this process in more detail in the following section.
Traceability policies: These policies define the relationships between each

requirement
and between the requirements and the system design that should be recorded. The
traceability policy should also define how these records should be maintained.
Tool support Requirements management: involves the processing of large amounts
of information about the requirements. Tools that may be used range from specialist
requirements management systems to spreadsheets and simple database systems.

Requirements management needs automated support and the software tools for this
should be chosen during the planning phase.

Requirements storage: The requirements should be maintained in a secure,

managed data store that is accessible to everyone involved in the requirements
engineering process.
Change management: The process of change management is simplified if active tool

support is available.
Traceability management: Tool support for traceability allows related requirements

to be discovered. Some tools are available which use natural language processing
techniques to help discover possible relationships between requirements.

Requirements change management

Requirements change management should be applied to all proposed changes to a
system’s requirements after the requirements document has been approved.

There are three principal stages to a change management process:
1. Problem analysis and change specification: The process starts with an identified
requirements problem or, sometimes, with a specific change proposal. During this
stage, the problem or the change proposal is analyzed to check that it is valid. This
analysis is fed back to the change requestor who may respond with a more specific
requirements change proposal, or decide to withdraw the request.

2. Change analysis and costing: The effect of the proposed change is assessed using

traceability information and general knowledge of the system requirements. The
cost of making the change is estimated both in terms of modifications to the
requirements document and, if appropriate, to the system design and
implementation. Once this analysis is completed, a decision is made whether or not
to proceed with the requirements change.

3. Change implementation: The requirements document and, where necessary, the

system design and implementation, are modified. You should organize the
requirements document so that you can make changes to it without extensive
rewriting or reorganization. As with programs, changeability in documents is
achieved by minimizing external references and making the document sections as
modular as possible. Thus, individual sections can be changed and replaced without
affecting other parts of the document.

DATA DICTIONARY:

A data dictionary stores information about data items found in a DFD.

Data dictionary features

Name: Identifies the data item
Alias: Identifies other names, abbreviations used to identify the data item
Data structure (type): Type of data (eg: int,char)
Description: Indicates how (why) a data item is used
Duration : (begins) Life span of data (when created)

Accuracy: High, medium and low accuracy
Range of values: Allowable values of data item
Data flows: Identifies process that generate/receive data

A data dictionary supplies information such as data typing, required accuracy of data
useful to designers and implementers. Name, alias, type and description indicate how
to identify, possible other names, types of data and what and how the data are used
respectively. Duration, accuracy and range of values specify life span, required
precision in measurement and all possible values of data items respectively. Data flows
specify processes that generate or receive the data. This provides another useful tool in
validating a design (making sure that the requirements for a data item are satisfied by a
design and by code).
In the case where data are derived from real-time system, data items can have timing
constraints
specifying the length of time before the data become out-of-date. also be included
depending on the type of model being developed.

Advantages of data dictionary:

 It is a mechanism for name management
 It serves as a store of organizational information

Analysis model:

The analysis model is a set of models, technically represent a system in order to validate
software requirements. Analysis modeling is the process of representing the
requirements for data, function and behaviour in the combined form of text and
diagrams for the purpose of easy
understanding and reviews.
Objectives of analysis model

 To describe and define the customer requirements

 To establish a basis for the creation of a software design
 To define a set of requirements that can be validated once the software is built.

Analysis modeling is not a single step, but it is a collective activity which is executed
step by step. The diagram depicts the functional view of analysis modeling

 Data modeling: defines data objects, attributes and relationships

 Functional modeling: defines data flow and its transformations within a system

 Behavioural modeling: depicts the impact of every event
Once the preliminary models are created, they are refined and analyzed to assess their
clarity,
completeness and consistency.
PETRI NETS

 A Petri Nets (PN) comprises places, transitions, and arcs
– Places are system states
– Transitions describe events that may modify the system state

– Arcs specify the relationship between places
 Tokens reside in places, and are used to specify the state of a PN

• Two places: Off and On
• Two transitions: Switch Off and Switch On
• Four arcs
• The off condition is true
• A transition can fire if an input token exists

– One token is moved from the input place to the output place.
PN properties

• 8-tuple mathematical model
– M={P,T,I,O,H,PAR,PRED,MP}
– P - the set of places
– T - the set of transitions
– I,O,H - Input, output, inhibition function
– PAR - the set of parameters
– PRED - Predicates restricting parameter range
– PM - Parameter value

• From this linear algebra can be used to analyze a network

• Very rich modeling
• Easily capable of modeling software project, requirements, architectures, and

processes

• Drawbacks
– Complex rules
– Analysis quite complex

STRUCTURED SYSTEMS ANALYSIS

● Structures system analysis — A nine-step technique to analyze client’s needs
● Step-wise refinement is used in many of steps
● Step 1: Draw the Data Flow Diagram (DFD)

 A pictorial representation of all aspects of the logical data flow
 Logical data flow — What happens
 Physical data flow — How it happens
 Any non-trivial product contains many elements
 DFD is developed by stepwise refinement
 For large products a hierarchy of DFDs instead of one DFD
 Constructed by identifying data flows: Within requirements
 document or rapid prototype

 Four basic symbols
 Source or destination of data
 (double-square box)
 Data flow (arrow)
 Process (rounded rectangle)
 Data store (open-ended
 rectangle)

● Step 2: Decide what sections to computerize and how (batch or online)
 � Depending on client’s needs and budget limitations
 � Cost-benefit analysis is applied

 Step 3: Determine details of data flows
 Decide what data items must go into various data flows
 Stepwise refinement of each flow
 For larger products, a data dictionary is generated

 Step 4: Define logic of processes
 Determine what happens within each process
 Use of decision trees to consider all cases

 Step 5: Define data stores
 Exact contents of each store and its representation (format)

● Step 6: Define physical resources
 File names, organization (sequential, indexed, etc.), storage

medium, and records
 If a database management system (DBMS) used: Relevant

information for each table
● Step 7: Determine input-output specifications

 Input forms and screens
 Printed outputs

● Step 8: Determine sizing
 Computing numerical data to determine hardware requirements
 Volume of input (daily or hourly)
 Frequency of each printed report and its deadline

 Size and number of records of each type to pass between CPU
 and mass storage
 Size of each file

● Step 9: Determine hardware requirements
 Use of sizing information to determine mass storage
 requirements
 Mass storage for backup
 Determine if client’s current hardware system is adequate

● After approval by client: Specification document is handed to design team, and
software process continues

