
 Unit-III Software Design

 Introduction

A software design creates meaningful engineering representation (or model) of
some software product that is to be built. Designers must strive to acquire a
repertoire of alternative design information and learn to choose the elements that
best match the analysis model. A design model can be traced to the customer's
requirements and can be assessed for quality against predefined criteria. During
the design process the software requirements model (data, function, behavior) is
transformed into design models that describe the details of the data structures,
system architecture, interfaces, and components necessary to implement the
system. Each design product is reviewed for quality (i.e. identify and correct
errors, inconsistencies, or omissions, whether better alternatives exist, and
whether the design model can be implemented within the project constraints)
before moving to the next phase of software development.

 Principles of Software Design

 Encompasses the set of principles, concepts, and practices that lead to the
development of a high quality system or product

 Design principles establish and overriding philosophy that guides the
designer as the work is performed

 Design concepts must be understood before the mechanics of design practice
are applied

 Goal of design engineering is to produce a model or representation that is
bug free (firmness), suitable for its intended uses (commodity), and
pleasurable to use (delight)

 Software design practices change continuously as new methods, better
analysis, and broader understanding evolve

 Software Engineering Design

 Data/Class design - created by transforming the analysis model class-based
elements (class diagrams, analysis packages, CRC models, collaboration
diagrams) into classes and data structures required to implement the software

 Architectural design - defines the relationships among the major structural
(fundamental, essential,)elements of the software, it is derived from the class-
based elements and flow-oriented elements (data flow diagrams, control flow
diagrams, processing narratives) of the analysis model

 Interface design - describes how the software elements, hardware elements,
and end-users communicate with one another, it is derived from the analysis
model scenario-based elements (use-case text, use-case diagrams, activity
diagrams, swim lane diagrams), flow-oriented elements, and behavioral
elements (state diagrams, sequence diagrams)

 Component-level design - created by transforming the structural elements
defined by the software architecture into a procedural(technical,practical)
description of the software components using information obtained from the
analysis model class-based elements, flow-oriented elements, and behavioral
elements

 Software Quality Attributes

A good design must
 implement all explicit requirements from the analysis model and

accommodate all implicit requirements desired by the user

 be readable and understandable guide for those who generate code, test
components, or support the system

 provide a complete picture (data, function, behavior) if the software from an
implementation perspective

 Design Quality Guidelines

A design should

 exhibit an architecture that
o has been created using recognizable architectural styles or patterns
o is composed of components that exhibit good design characteristics
o can be implemented in an evolutionary manner

 be modular

 contain distinct representations of data, architecture, interfaces, and
components (modules)

 lead to data structures that are appropriate for the objects to be implemented
and be drawn from recognizable design patterns

 lead to components that exhibit independent functional characteristics
 lead to interfaces that reduce the complexity of connections between modules

and with the external environment

 be derived using a repeatable method that is driven by information obtained
during software requirements analysis

 be represented using a notation that effectively communicates its meaning

 FURPS Quality Factors

 Functionality – feature set and program capabilities
 Usability – human factors (aesthetics, consistency, documentation)

 Reliability – frequency and severity opf failure
 Performance – processing speed, response time, throughput, efficiency

 Supportability – maintainability (extensibility, adaptability, serviceability),
testability, compatibility, configurability

 Generic Design Task Set

1. Examine information domain model and design appropriate data structures
for data objects and their attributes

2. Select an architectural pattern appropriate to the software based on the
analysis model

3. Partition the analysis model into design subsystems and allocate these
subsystems within the architecture
o Be certain each subsystem is functionally cohesive
o Design subsystem interfaces
o Allocate analysis class or functions to subsystems

4. Create a set of design classes
o Translate analysis class into design class
o Check each class against design criteria and consider inheritance issues
o Define methods and messages for each design class
o Evaluate and select design patterns for each design class or subsystem

after considering alternatives
o Revise design classes and revise as needed

5. Design any interface required with external systems or devices
6. Design user interface

o Review task analyses
o Specify action sequences based on user scenarios
o Define interface objects and control mechanisms
o Review interface design and revise as needed

7. Conduct component level design
o Specify algorithms at low level of detail
o Refine interface of each component
o Define component level data structures
o Review components and correct all errors uncovered

8. Develop deployment model

 Design Concepts

 Abstraction – allows designers to focus on solving a problem without being
concerned about irrelevant lower level details (procedural abstraction - named
sequence of events and data abstraction – named collection of data objects)

 Software Architecture – overall structure of the software components and the
ways in which that structure provides conceptual integrity for a system
o Structural models – architecture as organized collection of components
o Framework models – attempt to identify repeatable architectural patterns
o Dynamic models – indicate how program structure changes as a function

of external events
o Process models – focus on the design of the business or technical process

that system must accommodate
o Functional models – used to represent system functional hierarchy

 Design Patterns – description of a design structure that solves a particular
design problem within a specific context and its impact when applied

 Separation of concerns – any complex problem is solvable by subdividing it
into pieces that can be solved independently

 Modularity - the degree to which software can be understood by examining
its components independently of one another

 Information Hiding – information (data and procedure) contained within a
module is inaccessible to modules that have no need for such information

 Functional Independence – achieved by developing modules with single-
minded purpose and an aversion to excessive interaction with other models
o Cohesion - qualitative indication of the degree to which a module focuses

on just one thing
o Coupling - qualitative indication of the degree to which a module is

connected to other modules and to the outside world

 Refinement – process of elaboration where the designer provides successively
more detail for each design component

 Aspects – a representation of a cross-cutting concern that must be
accommodated as refinement and modularization occur

 Refactoring – process of changing a software system in such a way internal
structure is improved without altering the external behavior or code design

 Design Classes

 Refine analysis classes by providing detail needed to implement the classes
and implement a software infrastructure the support the business solution

 Five types of design classes can be developed to support the design
architecture
o user interface classes – abstractions needed for human-computer

interaction (HCI)
o business domain classes – refinements of earlier analysis classes
o process classes – implement lower level business abstractions
o persistent classes – data stores that persist beyond software execution
o System classes – implement software management and control functions

 Design Class Characteristics

 Complete (includes all necessary attributes and methods) and sufficient
(contains only those methods needed to achieve class intent)

 Primitiveness – each class method focuses on providing one service

 High cohesion – small, focused, single-minded classes

 Low coupling – class collaboration kept to minimum

 Design Model

 Process dimension – indicates design model evolution as design tasks are
executed during software process

o Architecture elements
o Interface elements
o Component-level elements
o Deployment-level elements

 Abstraction dimension – represents level of detail as each analysis model
element is transformed into a design equivalent and refined

o High level (analysis model elements)
o Low level (design model elements)

 Many UML diagrams used in the design model are refinements of diagrams
created in the analysis model (more implementation specific detail is
provided)

 Design patterns may be applied at any point in the design process

Data Design

 High level model depicting user’s view of the data or information

 Design of data structures and operators is essential to creation of high-quality
applications

 Translation of data model into database is critical to achieving system
business objectives

 Reorganizing databases into a data warehouse enables data mining or
knowledge discovery that can impact success of business itself

Architectural Design

 Provides an overall view of the software product

 Derived from
o Information about the application domain relevant to software
o Relationships and collaborations among analysis model elements
o Availability of architectural patterns and styles

 Usually depicted as a set of interconnected systems that are often derived
from the analysis packages with in the requirements model

Interface Design

 Interface is a set of operations that describes the externally observable

behavior of a class and provides access to its public operations

 Important elements
o User interface (UI)
o External interfaces to other systems
o Internal interfaces between various design components

 Modeled using UML communication diagrams (called collaboration
diagrams in UML 1.x)

Component-Level Design

 Describes the internal detail of each software component
 Defines

o Data structures for all local data objects
o Algorithmic detail for all component processing functions
o Interface that allows access to all component operations

 Modeled using UML component diagrams, UML activity diagrams,
pseudocode (PDL), and sometimes flowcharts

Deployment-Level Design

 Indicates how software functionality and subsystems will be allocated within
the physical computing environment

 Modeled using UML deployment diagrams

 Descriptor form deployment diagrams show the computing environment but
does not indicate configuration details

 Instance form deployment diagrams identifying specific named hardware
configurations are developed during the latter stages of design

 Architectural Styles

An Architectural style typically specifies the design vocabulary ,constraints on
how that vocabulary is used and semantic assumptions about that vocabulary.
Each style has several views and structures. An architectural view represents a
set of elements and the relationships among them. Thus an architectural style
defines a family of such systems in terms of a pattern of structural organization.

Layered Architectural style:-

 This type of architectural style is the hierarchical organization of a system
in layers.

 Layered systems are designed in a modular fashion at each layer in the
architecture. There are well-defined interfaces between the layers.

 Layered system design is based on the increasing level of abstraction.

 Layered organization of an operating system is a good example of layered
architectural style.

 Other examples can be a database system ,an object request broker
,network layers etc.

 This architecture promotes reuse.

 However it has some drawbacks. It is not necessary to design all systems
in a layered fashion.

 Adding more number of layers may decrease system performance.

 Data-Flow Style:-

 The data flow is characterized by viewing the system as a series of
transformations in a successive manner.

 In this style the input data enters the system and then moves through the
components one at a time. and finally the transformed data are produced
as output.

 These styles focus on achieving the quality of reuse and modifiability.

 The pipe and filter style follows the component connector structure in
which components are filters and pipes are connectors.

 The filter reads stream of data as input ,performs data transformation and
forwards the output data stream to another filter.

 The pipe transforms data streams from one filter to another.

 The pipe and filter style processes data streams in a pipeline instead of
processing them as a single entity in the batch sequential style.

 For example a compiler executes in a pipe and filter style. It is comprised
of several pipelined activities or filters.

 These are lexical analysis ,semantic analysis, intermediate code generation
and code generation.

Client-Server style:-

 It is useful for distributed processing, load balancing, separation of
concerns and performance analysis.

 In this style there are two types of components, client and server.

 There exists connecting network between the clients and servers.

 The clients request services and the server provides services to the clients.

 The client communicates with servers through protocol and message

connectors.

 For example a web browser program running on the internet has client-

server style.

 This architectural style provides higher security ,centralized data access
and easier maintenance.

 Shared Data Style:-

 It is also called repository style which is comprised of a central data

 repository and a number of data accessors connected to the central
 repository.

 It is the shared data such as databases, files etc which are used by data
accessors such as users, nodes, developers.

 Shared data style creates, stores, updates and accesses persistent data.

 Data accessors communicate with the help of read and write

connectors.

 There are two major categories of shared data styles namely black

board and traditional database

 In the black board style, any change or update in the repository will be

of benefit to all the data accessors.

 For example, an insurance company policy has a central repository in

which any policy change or update is informed to the customers.

