
UNIT V PROJECT MANAGEMENT

ESTIMATION

 S/W is the most expensive element of virtually all computer based systems
 The accuracy of a s/w project estimate is predicated on a number of things:

 The degree to which the planner has properly estimated the size of the

product to be built

 The ability to translate the size estimate into human effort, calendar

time, and dollars (required availability of past records)

 The degree to which the project plan reflects the abilities of the s/w

team

 The stability of product requirements and the environment that

supports the s/w engineering effort

 Sizing represents the project planner’s first major challenge

 Size refers to a quantifiable outcome of the s/w project (e.g. LOC and/or FP)
Size-Oriented Metrics

 LOC measure claim that LOC is an “artifact” of all software development
projects that can be easily counted, that many existing software estimation
models use LOC or KLOC as a key input, and that a large body of literature and
data predicated on LOC already exists.

 The planner must estimate the LOC to be produced long before analysis and
design has been completed.

Function-Oriented Metrics

 Function-oriented software metrics use a measure of the functionality delivered
by the application as a normalization value. The most widely used function-
oriented metric is the function point (FP). Computation of the function point is
based on characteristics of the software’s information domain and complexity.

 The function point, like the LOC measure, is controversial. Proponents claim that
FP is programming language independent, making it ideal for applications using
conventional and nonprocedural languages, and that it is based on data that are
more likely to be known early in the evolution of a project, making FP more
attractive as an estimation approach.

 Opponents claim that the method requires some “sleight of hand” in that
computation is based on subjective rather than objective data, that counts of the
information domain (and other dimensions) can be difficult to collect after the
fact, and that FP has no direct physical meaning—it’s just a number.

A function point is a "unit of measurement" to express the amount of business

functionality an information system (as a product) provides to a user. Function points
measure software size. The cost (in dollars or hours) of a single unit is calculated from
past projects.
It can be used to estimate
 i.the cost or effort required to design, code and test the software.

https://en.wikipedia.org/wiki/Information_system

 ii.predict the number of errors that will be encountered during testing
 iii.forecast the number of components and/or the number of projected
source lines in the implemented system.

 External inputs: those items provided by the user that describe distinct
application-oriented data (such as file names and menu selections). Enquiries are
counted separately. Inputs used to update internal logical files(ILFs)

 External outputs: those items provided to the user that generate distinct

application-oriented data (such as reports and messages).
 External inquiries: interactive inputs requiring a response.
 External files: machine-readable interfaces to other systems.
 Internal files: logical master files in the system.

 FP=count total *[0.65+0.01* ∑ (Fi)]

Where count total is the sum of all FP entries obtained from the below table.

The Fi (I 1 t0 14) are valued adjustment factors based on responses to the following
questions

1. Does the system require reliable backup and recovery?
2. Are specialized data communications required to transfer information to or from

the application?
3. Are there distributed processing functions?
4. Is performance critical?
5. Will the system run I existing ,heavily utilized operational environment ?
6. Does the system require online data entry?
7. Does the online data entry require the input transaction to be built over multiple

screens or operations?
8. Are the ILFs updated online?
9. Are the inputs,outputs,files or inquiries complex?
10. Is the internal processing complex?
11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?
13. IS the system designed for multiple installations in different organizations?
14. Is the application designed to facilitate change and ease of use by the user?

Reconciling LOC and FP Metrics

The relationship between lines of code and function points depends upon the
programming language that is used to implement the software and the quality of the
design. Function points and LOC-based metrics have been found to be relatively
accurate predictors of software development effort and cost. However, in order to use
LOC and FP for estimation, an historical baseline of information must be established.
Within the context of process and project metrics, productivity and quality should be
concerned which are the measures of software development “output” as a function of
effort and time applied and measures of the “fitness for use” of the work products that
are produced. For process improvement and project planning purposes, the interest is
historical.
Make/Buy Decision

• It is often more cost effective to acquire rather than develop software
• Managers have many acquisition options

– Software may be purchased (or licensed) off the shelf
– “Full-experience” or “partial-experience” software components may be

acquired and integrated to meet specific needs
– Software may be custom built by an outside contractor to meet the

purchaser’s specifications
• The make/buy decision can be made based on the following conditions

– Will the software product be available sooner than internally developed
software?

– Will the cost of acquisition plus the cost of customization be less than the
cost of developing the software internally?

– Will the cost of outside support (e.g., a maintenance contract) be less than
the cost of internal support?

COCOMO II

Barry Boehm introduced COCOMO II (COst COnstructive MOdel) which is an
hierarchy of estimation models that addresses the following areas:

 Application composition model. Used during the early stages of software
engineering, when prototyping of user interfaces, consideration of software and
system interaction, assessment of performance, and evaluation of technology
maturity are paramount.

 Early design stage model. Used once requirements have been stabilized and
basic software architecture has been established.

 Post-architecture-stage model. Used during the construction of the software.
Three different sizing options are available as part of the model hierarchy: object points,
function points, and lines of source code.

OBJECT
TYPE

COMPLEXITY WEIGHT

SIMPL
E

MEDIUM DIFFICUL
T

Screen 1 2 3
Report 2 5 8

3GL
component

 10

The object point is an indirect software measure that is computed using counts of the
number of (1) screens (at the user interface), (2) reports, and (3) components likely to be
required to build the application.
When component-based development or general software reuse is to be applied, the
percent of reuse (%reuse) is estimated and the object point count is adjusted:

NOP=(Object points)*[(100-%reuse)/100]
where NOP is defined as new object points.
To derive an estimate of effort based on the computed NOP value, a “productivity rate”
must be derived.

 NOP
 PROD=--------------------------

 Person-month

for different levels of developer experience and development environment maturity.
Once the productivity rate has been determined, an estimate of project effort is
computed using

 NOP
Estimated effort=------------

 PROD
In more advanced COCOMO II models, 12 a variety of scale factors, cost drivers, and
adjustment procedures are required.

Developer’s
experience/capability

Very
low

Low Nominal High Very
high

Environment
maturity/capability

Very
low

Low Nominal High Very
high

PROD 4 7 13 25 50
PROJECT PLANNING PROCESS

The objective of software project planning is to provide a framework that enables the
manager to make reasonable estimates of resources, cost, and schedule.
The plan must be adapted and updated as the project proceeds.

Task Set for Project Planning

1. Establish project scope.
2. Determine feasibility.
3. Analyze risks (Chapter 28).
4. Define required resources.

a. Determine required human resources.
b. Define reusable software resources.
c. Identify environmental resources.

5. Estimate cost and effort.
a. Decompose the problem.

b. Develop two or more estimates using size, function points, process tasks, or
use cases.
c. Reconcile the estimates.

6. Develop a project schedule
a. Establish a meaningful task set.
b. Define a task network.
c. Use scheduling tools to develop a time-line chart.
d. Define schedule tracking mechanisms.

Scope and Feasibility

• Software scope describes

– The functions and features that are to be delivered to end users

– The data that are input to and output from the system

– The "content" that is presented to users as a consequence of using the

software

– The performance, constraints, interfaces, and reliability that bound the

system

• Scope can be define using two techniques

– A narrative description of software scope is developed after

communication with all stakeholders

– A set of use cases is developed by end users

• After the scope has been identified, two questions are asked

– Can we build software to meet this scope?

– Is the project feasible?

• Software engineers too often rush (or are pushed) past these questions

• Later they become mired in a project that is doomed from the onset

• After the scope is resolved, feasibility is addressed

• Software feasibility has four dimensions

– Technology – Is the project technically feasible? Is it within the state of the

art? Can defects be reduced to a level matching the application's needs?

– Finance – Is is financially feasible? Can development be completed at a

cost that the software organization, its client, or the market can afford?

– Time – Will the project's time-to-market beat the competition?

– Resources – Does the software organization have the resources needed to

succeed in doing the project?

Project Resources

• Three major categories of software engineering resources

– People

– Development environment

– Reusable software components

• Often neglected during planning but become a paramount concern

during the construction phase of the software process

• Each resource is specified with

– A description of the resource

– A statement of availability

– The time when the resource will be required

– The duration of time that the resource will be applied

14

Categories of Resources

People

- Number required
- Skills required
- Geographical location

Development Environment

- Software tools
- Computer hardware
- Network resources

Reusable Software Components

- Off-the-shelf components
- Full-experience components
- Partial-experience components

The

Project

Human Resources

• Planners need to select the number and the kind of people skills needed to

complete the project

• They need to specify the organizational position and job specialty for each

person

• Small projects of a few person-months may only need one individual

• Large projects spanning many person-months or years require the location of the

person to be specified also

• The number of people required can be determined only after an estimate of the

development effort

 Development Environment Resources

• A software engineering environment (SEE) incorporates hardware, software, and

network resources that provide platforms and tools to develop and test software

work products

• Most software organizations have many projects that require access to the SEE

provided by the organization

• Planners must identify the time window required for hardware and software and

verify that these resources will be available

Reusable Software Resources

• Off-the-shelf components

– Components are from a third party or were developed for a previous project

– Ready to use; fully validated and documented; virtually no risk

• Full-experience components

– Components are similar to the software that needs to be built

– Software team has full experience in the application area of these

components

– Modification of components will incur relatively low risk

• Partial-experience components

– Components are related somehow to the software that needs to be built

but will require substantial modification

– Software team has only limited experience in the application area of these

components

– Modifications that are required have a fair degree of risk

• New components

– Components must be built from scratch by the software team specifically

for the needs of the current project

– Software team has no practical experience in the application area

– Software development of components has a high degree of risk

RISK MANAGEMENT

Risk concerns with failure happenings. Risk involves change, such as in changes in
mind,
opinion, actions, or places.

 uncertainty—the risk may or may not happen;
 loss—if the risk becomes a reality, unwanted consequences or losses will occur
Project risks threaten the project plan. That is, if project risks become real, it is likely

that the project schedule will slip and that costs will increase. Project risks identify
potential budgetary, schedule, personnel (staffing and organization), resource,
stakeholder, and requirements problems and their impact on a software project.

Technical risks threaten the quality and timeliness of the software to be produced. If
a technical risk becomes a reality, implementation may become difficult or impossible.
Technical risks identify potential design, implementation, interface, verification, and
maintenance problems.

Business risks threaten the viability of the software to be built and often jeopardize
the project or the product. Candidates for the top five business risks are

 building an excellent product or system that no one really wants (market risk),
 building a product that no longer fits into the overall business strategy for the

company (strategic risk),

 building a product that the sales force doesn’t understand how to sell (sales risk),

 losing the support of senior management due to a change in focus or a change in
people (management risk), and

 losing budgetary or personnel commitment (budget risks).
Known risks are those that can be uncovered after careful evaluation of the project

plan, the business and technical environment in which the project is being developed,
and other reliable information sources (e.g., unrealistic delivery date, lack of
documented requirements or software scope, poor development environment).

Predictable risks are extrapolated from past project experience (e.g., staff turnover,
poor communication with the customer, dilution of staff effort as ongoing maintenance
requests are serviced). Unpredictable risks are the joker in the deck. They can and do
occur, but they are extremely difficult to identify in advance.
Risk Identification

Risk identification is a systematic attempt to specify threats to the project plan
(estimates, schedule, resource loading, etc.). By identifying known and predictable
risks, the project manager takes a first step toward avoiding them when possible and
controlling them when necessary.

There are two distinct types of risks for each of the categories: generic risks and
product-specific risks.

 Generic risks are a potential threat to every software project.

 Product-specific risks can be identified only by those with a clear
understanding of the technology, the people, and the environment that is
specific to the software that is to be built.

One method for identifying risks is to create a risk item checklist. The checklist can be
used for risk identification and focuses on some subset of known and predictable risks
in the following generic subcategories:

 Product size—risks associated with the overall size of the software to be built or
modified.

 Business impact—risks associated with constraints imposed by management or
the marketplace.

 Stakeholder characteristics—risks associated with the sophistication of the
stakeholders and the developer’s ability to communicate with stakeholders in a
timely manner.

 Process definition—risks associated with the degree to which the software
process has been defined and is followed by the development organization.

 Development environment—risks associated with the availability and quality of
the tools to be used to build the product.

 Technology to be built—risks associated with the complexity of the system to be
built and the “newness” of the technology that is packaged by the system.

 Staff size and experience—risks associated with the overall technical and project
experience of the software engineers who will do the work.

Risk Projection

Risk projection, also called risk estimation, attempts to rate each risk in two ways— the
likelihood or probability that the risk is real and the consequences of the problems
associated with the risk, should it occur. You work along with other managers and
technical staff to perform four risk projection steps:

 Establish a scale that reflects the perceived likelihood of a risk.

 Delineate the consequences of the risk.
 Estimate the impact of the risk on the project and the product.

 Assess the overall accuracy of the risk projection so that there will be no
misunderstandings.

A risk table provides you with a simple technique for risk projection.
The overall risk exposure RE is determined using the following relationship:

RE =P * C
Risk Refinement

One way to do this is to represent the risk in condition-transition-consequence (CTC)
format. That is, the risk is stated in the following form:

Given that <condition> then there is concern that (possibly) <consequence>.
This general condition can be refined in the following manner:
Subcondition 1. Certain reusable components were developed by a third party with no

knowledge of internal design standards.
Subcondition 2. The design standard for component interfaces has not been solidified
and may not conform to certain existing reusable components.
Subcondition 3. Certain reusable components have been implemented in a language

that is not supported on the target environment.

Risk Mitigation,Monitoring and Management

An effective strategy must consider three issues: risk avoidance, risk monitoring, and
risk management and contingency planning.
To mitigate this risk, a strategy has to be developed for reducing turnover. Among the
possible steps to be taken are:

 Meet with current staff to determine causes for turnover (e.g., poor working
conditions, low pay, competitive job market).

 Mitigate those causes that are under your control before the project starts.

 Once the project commences, assume turnover will occur and develop techniques
to ensure continuity when people leave.

 Organize project teams so that information about each development activity is
widely dispersed.

 Define work product standards and establish mechanisms to be sure that all
models and documents are developed in a timely manner.

 Conduct peer reviews of all work (so that more than one person is “up to
speed”).

 Assign a backup staff member for every critical technologist.
PROJECT SCHEDULING AND TRACKING

Software project scheduling is an action that distributes estimated effort across the
planned project duration by allocating the effort to specific software engineering tasks.
Scheduling for software engineering projects can be viewed from two rather different
perspectives. In the first, an end date for release of a computer-based system has
already (and irrevocably) been established. The software organization is constrained to
distribute effort within the prescribed time frame. The second view of
software scheduling assumes that rough chronological bounds have been discussed but
that the end date is set by the software engineering organization.
Basic Principles

 Compartmentalization. The project must be compartmentalized into a number

of manageable activities and tasks. To accomplish compartmentalization, both
the product and the process are refined.

 Interdependency. The interdependency of each compartmentalized activity or

task must be determined. Some tasks must occur in sequence, while others can
occur in parallel. Some activities cannot commence until the work product
produced by another is available. Other activities can occur independently.

 Time allocation. Each task to be scheduled must be allocated some number of
work units (e.g., person-days of effort). In addition, each task must be assigned a
start date and a completion date that are a function of the interdependencies and
whether work will be conducted on a full-time or part-time basis.

 Effort validation. Every project has a defined number of people on the software

team. As time allocation occurs, you must ensure that no more than the allocated
number of people has been scheduled at any given time. For example, consider a
project that has three assigned software engineers (e.g., three person-days are
available per day of assigned effort4). On a given day, seven concurrent tasks

must be accomplished. Each task requires 0.50 person-days of effort. More effort
has been allocated than there are people to do the work.

 Defined responsibilities. Every task that is scheduled should be assigned to a
specific team member.

 Defined outcomes. Every task that is scheduled should have a defined outcome.

For software projects, the outcome is normally a work product (e.g., the design of
a component) or a part of a work product. Work products are often combined in
deliverables.

 Defined milestones. Every task or group of tasks should be associated with a
project milestone. A milestone is accomplished when one or more work products
has been reviewed for quality.

The Relationship Between People and Effort

L, is related to effort and development time by the equation:
L=P*E1/3t4/3

Rearranging this software equation, we can arrive at an expression for development
effort E:
 L3

E=-------------------
 P3 t4

Effort Distribution

A recommended distribution of effort across the software process is often referred to as
the 40–20–40 rule. Forty percent of all effort is allocated to frontend analysis and design.
A similar percentage is applied to back-end testing. 20 percent of effort is deemphasized
in the coding.
Because of the effort applied to software design, code should follow with relatively little
difficulty. A range of 15 to 20 percent of overall effort can be achieved. Testing and
subsequent debugging can account for 30 to 40 percent of software development effort.
The criticality of the software often dictates the amount of testing that is required. If
software is human rated (i.e., software failure can result in loss of life), even higher
percentages are typical.

Impossible

region

Effort

cost

Development
t

optimal
 t

theoretical

E
optimal

E

t
minimum

Task Network
Task Set

• A task set is the work breakdown structure for the project
• No single task set is appropriate for all projects and process models

– It varies depending on the project type and the degree of rigor (based on
influential factors) with which the team plans to work

• The task set should provide enough discipline to achieve high software quality
– But it must not burden the project team with unnecessary work

Purpose of a Task Network

• Also called an activity network
• It is a graphic representation of the task flow for a project
• It depicts task length, sequence, concurrency, and dependency
• Points out inter-task dependencies to help the manager ensure continuous

progress toward project completion
• The critical path

 A single path leading from start to finish in a task network
 It contains the sequence of tasks that must be completed on schedule if the

project as a whole is to be completed on schedule
 It also determines the minimum duration of the project

Timeline Chart

• Also called a Gantt chart; invented by Henry Gantt, industrial engineer, 1917
• All project tasks are listed in the far left column
• The next few columns may list the following for each task: projected start date,

projected stop date, projected duration, actual start date, actual stop date, actual
duration, task inter-dependencies (i.e., predecessors)

• To the far right are columns representing dates on a calendar
• The length of a horizontal bar on the calendar indicates the duration of the task
• When multiple bars occur at the same time interval on the calendar, this implies

task concurrency
• A diamond in the calendar area of a specific task indicates that the task is a

milestone; a milestone has a time duration of zero

Project Table

Earned value analysis

The earned value system provides a common value scale for every [software project]
task, regardless of the type of work being performed. The total hours to do the whole
project are estimated, and every task is given an earned value based on its estimated
percentage of the total.
To determine the earned value, the following steps are performed:

 The budgeted cost of work scheduled (BCWS) is determined for each work task
represented in the schedule.

http://www.laynetworks.com/Software Engineering_2b.htm

 The BCWS values for all work tasks are summed to derive the budget at
completion (BAC). Hence,

BAC=(BCWSk) for all task k

 Next, the value for budgeted cost of work performed (BCWP) is computed. The
value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

Given values for BCWS, BAC, and BCWP, important progress indicators can be
computed:

 BCWP
Schedule performance index, SPI = -------------

 BCWS
Schedule Variance, SV = BCWP-BCWS
 BCWS

Percent scheduled for completion=--------------------
 BAC

 BCWP
Percent complete=----------------

 BAC
BCWP

Cost performance index,CPI=---------------
ACWP

Cost variance, CV=BCWP-ACWP
A CPI value close to 1.0 provides a strong indication that the project is within its
defined budget. CV is an absolute indication of cost savings (against planned costs) or
shortfall at a particular stage of a project. Like over-the-horizon radar, earned value
analysis illuminates scheduling difficulties before they might otherwise be apparent.
This enables you to take corrective action before a project crisis develops.
PROCESS AND PROJECT METRICS-DECOMPOSITION TECHNIQUES

The decomposition approach was discussed from two different points of view:
decomposition of the problem and decomposition of the process.
Software Sizing

The accuracy of a software project estimate is predicated on a number of things:
 the degree to which you have properly estimated the size of the product to be

built;

 the ability to translate the size estimate into human effort, calendar time, and
dollars
(a function of the availability of reliable software metrics from past projects);

 the degree to which the project plan reflects the abilities of the software team;
and

 the stability of product requirements and the environment that supports the
software engineering effort.

Problem-Based Estimation

LOC and FP data are used in two ways during software project estimation: (1) as
estimation variables to “size” each element of the software and (2) as baseline metrics
collected from past projects and used in conjunction with estimation variables to
develop cost and effort projections.

There is often substantial scatter in productivity metrics for an organization,
making the use of a single-baseline productivity metric suspect. In general, LOC/pm or
FP/pm averages should be computed by project domain. That is, projects should be
grouped by team size, application area, complexity, and other relevant parameters.
Local domain averages should then be computed. When a new project is estimated, it
should first be allocated to a domain, and then the appropriate domain average for past
productivity should be used in generating the estimate.

The LOC and FP estimation techniques differ in the level of detail required for
decomposition and the target of the partitioning. When LOC is used as the estimation
variable, decomposition is absolutely essential and is often taken to considerable levels
of detail. The greater the degree of partitioning, the more likely reasonably accurate
estimates of LOC can be developed.

For FP estimates, decomposition works differently. Rather than focusing on
function, each of the information domain characteristics—inputs, outputs, data files,
inquiries, and external interfaces—as well as the 14 complexity adjustment values are
estimated. The resultant estimates can then be used to derive an FP value that can be
tied to past data and used to generate an estimate. Regardless of the estimation variable
that is used, you should begin by estimating a range of values for each function or
information domain value. Using historical data or (when all else fails) intuition,
estimate an optimistic, most likely, and pessimistic size value for each function or count
for each information domain value. An implicit indication of the degree of uncertainty
is provided when a range
of values is specified.

A three-point or expected value can then be computed. The expected value for the
estimation variable (size) S can be computed as a weighted average of the optimistic
(sopt), most likely (sm), and pessimistic (spess) estimates. For example

Sopt+4Sm+Spess

S= --------------------------
 6

gives heaviest credence to the “most likely” estimate and follows a beta probability
distribution.
Process-based Estimation

Process-based estimation begins with a delineation of software functions obtained from
the project scope. A series of framework activities must be performed for each function.
Costs and effort for each function and framework activity are computed as the last step.
If process-based estimation is performed independently of LOC or FP estimation, two
or three estimates for cost and effort are considered that may be compared and
reconciled. If both sets of estimates show rea sonable agreement, there is good reason to

believe that the estimates are reliable. If, on the other hand, the results of these
decomposition techniques show little agreement, further investigation and analysis
must be conducted.(LOC and FP-based estimations, process and problem-based
estimations examples has to be provided.
Estimation with Use Cases

 Use cases are described using many different formats and styles—there is no
standard form.

 Use cases represent an external view (the user’s view) of the software and can
therefore be written at many different levels of abstraction.

 Use cases do not address the complexity of the functions and features that are
described.

 Use cases can describe complex behaviour (e.g., interactions) that involve many
functions and features.

Reconciling Estimates

The estimation techniques discussed in the preceding sections result in multiple
estimates that must be reconciled to produce a single estimate of effort, project duration,
or cost.

 the scope of the project is not adequately understood or has been misinterpreted by
the planner, or

 productivity data used for problem-based estimation techniques is inappropriate for
the application, obsolete (in that it no longer accurately reflects the software
engineering organization), or has been misapplied.

