
CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 1

UNIT 1 OBJECT ORIENTED PROGRAMMING FUNDAMENTALS
C++ Programming features - Data Abstraction - Encapsulation - class - object - constructors – static members –
constant members – member functions – pointers – references - Role of this pointer – Storage classes – function
as arguments.

DIFFERENCE BETWEEN C & C++

Procedure Oriented Programming Object Oriented Programming.

The problem is viewed as a sequence of

things to be done.

Larger programs are divided into smaller

programs known as functions.

The data is defined as global and accessible

to all the functions of a program without any

restrictions which reduces data security and

integrity.

 Employs top-down approach

Emphasis on data rather than procedure.

Larger programs are divided into objects.

It ties data more closely to the function

that operates on it and protects it from

accidental modification from outside.

Employs bottom-up approach

INTRODUCTION TO C++

Basics of C++ Programming

C++ was developed by BJARNE STROUSSTRUP at AT&T BELL Laboratories in Murry

Hill, USA in early 1980„s. STROUSSTRUP combines the features of ‗C„ language and

‗SIMULA67„ to create more powerful language that support OOPS concepts, and that language

was named as ―C with CLASSES‖. In late 1983, the name got changed to C++. The idea of

C++ comes from ‗C„ language increment operator (++) means more additions. C++, but the

object oriented features (Classes, Inheritance, Polymorphism, Overloading) makes the C++ truly

as Object Oriented Programming language.

STRUCTURE OF C++ PROGRAM

Include files

Class Definition

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 2

Member function Definitions

Include files provides instructions to the compiler to link functions from the system library.

Eg: #include <iostream.h>

#include – Preprocessor Directive

iostream.h – Header File

A class is a way to bind and its associated functions together. It is a user defined datatype. It

must be declared at class declaration part.

Member function definition describes how the class functions are implemented. This must be the

next part of the C++ program.

Finally main program part, which begins program execution.

main()

{

}

Program execution begins at the opening brace and ends at the closing brace. The closing brace

of the main function is the logical and of the program.

Input / Output statements

Input Stream

Syntax:

cin >> var1 >> var2 >>;

cin – Keyword, it is an object, predefined in C++ to correspond to the standard input stream.

>> - is the extraction or get from operator

Extraction operation (>>) takes the value from the stream object on its left and places it in the

variable on its right.

Eg:

cin>>x;

cin>>a>>b>>c;

Output Stream:

Syntax:

cout<<var1<<var2;

cout - object of standard output stream

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 3

<< - is called the insertion or put to operator

It directs the contents of the variable on its right to the object on its left. Output stream can be

used to display messages on output screen.

Eg:

cout<<a<<b; cout<<‖value of x is‖<<x;

cout<<‖Value of x is‖<<x<<‖less than‖<<y;

TOKENS

The smallest individual units in a program are known as tokens. C++ has the following tokens

 Keywords

 Identifiers

 Constants

 Strings

 Operators

Keywords

It has a predefined meaning and cannot be changed by the user

Keywords cannot be used as names for the program variables. Keywords supported by C++ are:

asm double new switch

auto else operator template

break enum private this

case extern protected throw

catch float public try

char for register typedef

class friend return union

const goto short unsigned

Identifiers

Identifiers refer to the names of variables, functions, arrays, classes, etc. created by the

programer.

Rules for naming these identifiers:

Only alphabetic characters, digits and underscores are permitted.

The name cannot start with a digit.

Uppercase and lowercase letters are distinct.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 4

A declared keyword cannot be used as a variable name.

(i) Variables:It is an entity whose value can be changed during program execution and is known

to the program by a name.

A variable can hold only one value at a time during program execution.A variable is the

storage location in memory that is stored by its value. A variable is identified or denoted by a

variable name.

The variable name is a sequence of one or more letters, digits or underscore.

Rules for defining variable name:

A variable name can have one or more letters or digits or underscore for example

character White space, punctuation symbols or other characters are not permitted to denote

variable name.A variable name must begin with a letter.

Variable names cannot be keywords or any reserved words of the C++ programming

language. C++ is a case-sensitive language.

Variable names written in capital letters differ from variable names with the same name

but written in small letters.

Declaration of Variables

Syntax :datatype variablename;

Datatype

It is the type of data, that is going to be processed within the program

C++ datatype

User Defined type Built-in type Derived type

Eg: Eg: Eg:

structure Void Array

union int Function

Enumerated float Pointers

 double

 char

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 5

constant

A quantity that does not change is known as constants. integer constants are represented as

decimal notation.

Decimal notation is represented with a number.

Octal notation is represented with the number preceded by a zero(0) character.

A hexadecimal number is preceded with the characters 0x.

Types of constants:

 Integer constants - Eg: 123, 25 – without decimal point

 Character constants - Eg: ‗A„, ‗B„, ‗*„, ‗1„

 Real constants - Eg: 12.3, 2.5 - with decimal point

Strings

A sequence of characters is called string. String constants are enclosed in double quotes as

follows

―Hello‖

OPERATORS

An operator is a symbol that tells the computer to perform certain mathematical or logical

manipulations.

Types of Operators

1. Arithmetic Operators

2. Relational Operators

3. Logical Operators

4. Assignment Operators

5. Increment & decrement Operators

6. Conditional Operators

7. Bitwise Operators

8. Special Operators

9. Manipulators

10. Memory allocate / delete Operators

An expression is a combination of variables, constants and operators written according to the

syntax of the language.

Arithmetic Operators

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 6

 C++ has both unary & binary arithmetic operators.

 Unary operators are those, which operate on a single operand.

 Whereas, binary operators on two operands +, -, *, /, %

Examples for Unary Operators:

1. int x = 10;

y = -x;

int x = 5; sum = -x;

Examples for Unary Operators:

int x = 16, y=5;

x+y = 21; (result of the arithmetic expression) x-y = 11;

x*y=80;

/ - Division Operator

Eg:

x = 10, y = 3;

x/y=3; (The result is truncated, the decimal part is discarded.)

% - Modulo Division

The result is the remainder of the integer division only applicable for integer values. x=11, y = 2

x%y = 1

Relational Operators

 A relational operator is used to make comparison between two expressions.

 All relational operators are binary and require two operands.

<, <=, >, >=, ++, !=

Relational Expression

Expression1 (relational operator) Expression2

Expression1 & 2 – may be either constants or variables or arithmetic expression. Eg:

a < b (Compares its left hand side operand with its right hand side operand) 10 = = 15(Equals)

a != b(Not equals)

An relational expression is always return either zero or 1, after evaluation.

Eg: (a+b) <= (c+d)

arithmetic expression

Logical Operators

&& - Logical AND

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 7

- Logical OR

Increment & Decrement Operators

 Increment ++, this operator adds 1 to the operand

 Decrement --, this operator subtracts 1 from the operand

 Both are unary operators

Eg:

m = 5;

y = ++m; (adds 1 to m value)

x = --m; (Subtracts 1 from the value of m)

Types

 Pre Increment / Decrement OP:

 Post Increment / Decrement OP:

If the operator precedes the operand, it is called pre increment or pre decrement.

Eg: ++i, --i;

If the operator follows the operand, it is called post increment or post decrement.

Eg: i++, i--;

In the pre Increment / Decrement the operand will be altered in value before it is utilized for its

purpose within the program.

Eg: x = 10;

Y = ++x;

1
st
 x value is getting incremented with 1.

Then the incremented value is assigned to y.

In the post Increment / Decrement the value of the operand will be altered after it is utilized.

Eg: y = 11;

x = y++;

1
st
 x value is getting assigned to x & then the value of y is getting increased.

Conditional Operator? :

General Form is

Conditional exp ? exp 1 : exp 2;

Conditional exp - either relational or logical expression is used.

Exp1 & exp 2 : are may be either a variable or any statement.

Eg:

(a>b)?a:b;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 8

Conditional expression is evaluated first.

If the result is ‗1„ is true, then expression1 is evaluated.

If the result is zero, then expression2 is evaluated.

Special Operators

sizeof

comma(,)

size of operators returns the size the variable occupied from system memory.

Eg:

var = sizeof(int)

cout<<var; Ans: 2

x = size of (float);

cout << x; Ans: 4

int y;

Manipulators

Manipulators are operators used to format the data display. The commonly used manipulators are

endl, setw.

endl manipulators

It is used in output statement causes a line feed to be inserted, it has the same effect as using the

newline character ―\n‖ in ‗C„ language.

#include <iostream.h>

main()

{

int a=10, b=20;

cout << ―C++ language‖ << endl; cout << ―A value: ― << a << endl; cout << ―B value:‖ <<

b << endl;

}

O/P:

C++ language

A value: 10

B value: 20

Setw Manipulator

The setw manipulator is used or specify the field width for printing, the content of the variable.

Syntax: setw(width);

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 9

where width specifies the field width.

int a = 10;

cout << ― A value‖ << setw(5) << a << endl;

Output:

A value 10

REFERENCE VARIABLE

A reference variable provides an alias (alternative name) for a previously defined variable.

For example, if we make the variable sum a reference to the variable total, then sum & total can

be used interchangeably to represent that variable.

A reference variable is created as follows:

datatype & ref_name = var_name;

Eg:

Float total = 100; float & sum = total; cout << sum << total;

Both the variables refer to the same data object in the memory i.e. total, sum 100

CLASS SCOPE AND ACCESSING CLASS MEMBERS

A class definition starts with the keyword class followed by the class name; and the class body,

enclosed by a pair of curly braces. A class definition must be followed either by a semicolon or a

list of declarations

General Syntax of a class:

General structure for defining a class is:

class classname

{

 acess specifier:

 data member;

 member functions;

acess specifier:

data member;

member functions;

};

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 10

Generally, in class, all members (data) would be declared as private and the member functions

would be declared as public. Private is the default access level for specifiers. If no access

specifiers are identified for members of a class, the members are defaulted to private access.

example

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The keyword public determines the access attributes of the members of the class that follow it. A

public member can be accessed from outside the class anywhere within the scope of the class

object. You can also specify the members of a class as private orprotected

Creation of Objects:

Once the class is created, one or more objects can be created from the class as objects are

instance of the class.

Objects are also declared as:

class name followed by object name;

exforsys e1;

This declares e1 to be an object of class exforsys.

For example a complete class and object declaration is given below:

class exforsys

{

 private:

 int x,y;

 public:

 void sum()

 {

 ………

 ………

 }

};

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 11

main()

{

 exforsys e1;

 ……………

 ……………

}

The object can also be declared immediately after the class definition. In other words the object

name can also be placed immediately before the closing flower brace symbol } of the class

declaration.

For example

class exforsys

{

 private:

 int x,y;

 public:

 void sum()

 {

 ………

 ………

 }

}e1 ;

The above code also declares an object e1 of class exforsys.

It is important to understand that in object-oriented programming language, when a class is

created no memory is allocated. It is only when an object is created is memory then allocated.

Accessing the Data Members:

The public data members of objects of a class can be accessed using the direct member access

operator (.). Let us try the following example to make the things clear:

#include <iostream>

using namespace std;

class Box

{

 public:

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 12

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main()

{

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

It is important to note that private and protected members can not be accessed directly using

direct member access operator (.). We will learn how private and protected members can be

accessed.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 13

Access Specifiers

Access specifiers are used to identify access rights for the data and member functions of the

class.

There are three main types of access specifiers in C++ programming language: private public

protected

A private member within a class denotes that only members of the same class have accessibility.

The private member is inaccessible from outside the class.

Public members are accessible from outside the class.

A protected access specifier is a stage between private and public access. If member functions

defined in a class are protected, they cannot be accessed from outside the class but can be

accessed from the derived class.

When defining access specifiers, the programmer must use the keywords: private, public or

protected when needed, followed by a colon and then define the data and member

Scope resolution operator

Scope resolution operator is used to uncover the hidden variables. It also allows access to global

version of variables.

Eg:

#include<iostream. h>

int m=10; // global variable m

void main ()

{

int m=20; // local variable m

cout<<”m=”<<m<<”\n”;

cout<<”: : m=”<<: : m<<”\n”;

}

output:

20

10 (: : m access global m)

Scope resolution operator is used to define the function outside the class.

Syntax:

Return type <class name> : : <function name>

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 14

Eg:

Void x : : getdata()

MEMBER FUNCTION AND CLASS

A member function of a class is a function that has its definition or its prototype within the class

definition like any other variable. It operates on any object of the class of which it is a member,

and has access to all the members of a class for that object.

Member functions can be defined within the class definition or outside the class

MEMBER FUNCTION INSIDE THE CLASS

 A member function of a class can also be defined inside the class. However, when a member

function is defined inside the class, the class name and the scope resolution operator are not

specified in the function header. Moreover, the member functions defined inside a class

definition are by default inline functions.

Defining a member function within the class definition declares the function inline, even if you

do not use the inline specifier. So either you can define Volume() function as below:

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

 double getVolume(void)

 {

 return length * breadth * height;

 }

};

MEMBER FUNCTION OUTSIDE THE CLASS

Member function outside the class can defined using scope resolution operator.defining a

member function outside a class requires the function declaration (function prototype) to be

provided inside the class definition. The member function is declared inside the class like a

normal function. This declaration informs the compiler that the function is a member of the class

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 15

and that it has been defined outside the class. After a member function is declared inside the

class, it must be defined (outside the class) in the program.

The definition of member function outside the class differs from normal function definition, as

the function name in the function header is preceded by the class name and the scope resolution

operator (: :). The scope resolution operator informs the compiler what class the member belongs

to. The syntax for defining a member function outside the class is

Return_type class_name :: function_name (parameter_list)

{

// body of the member function

}

 If you like you can define same function outside the class using scope resolution operator, :: as

follows:

double Box::getVolume(void)

{

 return length * breadth * height;

}

Here, only important point is that you would have to use class name just before :: operator. A

member function will be called using a dot operator (.) on a object where it will manipulate data

related to that object only as follows:

A member function will be called using a dot operator (.) on a object where it will manipulate

data related to that object only as follows:

Box myBox; // Create an object

myBox.getVolume(); // Call member function for the object

Let us put above concepts to set and get the value of different class members in a class:

#include <iostream>

using namespace std;

class Box

{

 public:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 16

 // Member functions declaration

 double getVolume(void);

 void setLength(double len);

 void setBreadth(double bre);

 void setHeight(double hei);

};

// Member functions definitions

double Box::getVolume(void)

{

 return length * breadth * height;

}

void Box::setLength(double len)

{

 length = len;

}

void Box::setBreadth(double bre)

{

 breadth = bre;

}

void Box::setHeight(double hei)

{

 height = hei;

}

// Main function for the program

int main()

{

 Box Box1; // Declare Box1 of type Box

 Box Box2; // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 17

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 cout << "Volume of Box1 : " << volume <<endl;

 // volume of box 2

 volume = Box2.getVolume();

 cout << "Volume of Box2 : " << volume <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

BASIC CONCEPTS OF OOPS

• Objects.

• Classes.

• Data abstraction and Encapsulation.

• Inheritance.

• Polymorphism.

• Dynamic binding.

• Message passing.

 Class definitions – Basic building blocks OOP and a single entity which has data and

operations on data together

 Objects – The instances of a class which are used in real functionality – its variables and

operations

 Abstraction – Specifying what to do but not how to do ; a flexible feature for having a overall

view of an object‟s functionality.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 18

 Encapsulation – Binding data and operations of data together in a single unit – A class adhere

this feature

 Inheritance and class hierarchy – Reusability and extension of existing classes

 Polymorphism – Multiple definitions for a single name - functions with same name with

different functionality; saves time in investing many function names Operator and Function

overloading

 Generic classes – Class definitions for unspecified data. They are known as container classes.

They are flexible and reusable.

 Class libraries – Built-in language specific classes

 Message passing – Objects communicates through invoking methods and sending data to them.

This feature of sending and receiving information among objects through function parameters

is known as Message Passing.

Features of OOPS.

• Emphasis is on data rather than on procedure.

• Programs are divided into objects.

• Data is hidden and cannot be accessed by external functions.

• Follows bottom -up approach in program design.

Applications of OOPS

• Real-time systems.

• Simulation and modeling.

• Object-oriented databases.

• AI and expert systems.

VARIOUS ACCESS SPECIFIERS

 Data hiding is one of the important features of Object Oriented Programming which allows

preventing the functions of a program to access directly the internal representation of a class

type.

 The access restriction to the class members is specified by the labelled public,

private, and protected sections within the class body.

 The keywords public, private, and protected are called access specifiers.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 19

 A class can have multiple public, protected, or private labeled sections.

 Each section remains in effect until either another section label or the closing right brace of the

class body is seen.

 The default access for members and classes is private.

class Base {

 public:

 // public members go here

 protected:

 // protected members go here

 private:

 // private members go here

 };

The public members:

A public member is accessible from anywhere outside the class but within a program.

#include <iostream>

class Line

{

 public:

 double length;

 void setLength(double len);

 double getLength(void);

};

 double Line::getLength(void)

{

 return length ;

}

void Line::setLength(double len)

{

 length = len;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 20

}

int main()

{

 Line line;

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 line.length = 10.0; // OK: because length is public

 cout << "Length of line : " << line.length <<endl;

 return 0;

}

Output

Length of line: 6

Length of line: 10

The private members:

 A private member variable or function cannot be accessed, or even viewed from outside the

class.

 Only the class and friend functions can access private members.

 By default all the members of a class would be private

#include <iostream>

class Box

{

 double width;

 public:

 double length;

 void setWidth(double wid);

 double getWidth(void);

};

double Box::getWidth(void)

{

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 21

 return width ;

}

 void Box::setWidth(double wid)

{

 width = wid;

}

int main()

{

 Box box;

 box.length = 10.0; // OK: because length is public

 cout << "Length of box : " << box.length <<endl;

 // box.width = 10.0; // Error: because width is private

 box.setWidth(10.0);

 cout << "Width of box : " << box.getWidth() <<endl;

 return 0;

}

Output:

Length of box: 10

Width of box: 10

The protected members:

A protected member variable or function is very similar to a private member but it provided

one additional benefit that they can be accessed in child classes which are called derived

classes.

#include <iostream>

class Box

{

 protected:

 double width;

};

class SmallBox:Box

{

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 22

 public:

 void setSmallWidth(double wid);

 double getSmallWidth(void);

};

double SmallBox::getSmallWidth(void)

{

 return width ;

}

void SmallBox::setSmallWidth(double wid)

{

 width = wid;

}

int main()

{

 SmallBox box;

 box.setSmallWidth(5.0);

 cout << "Width of box : "<< box.getSmallWidth() << endl;

 return 0;

}

Output:

Width of box: 5

STATIC MEMBER AND MEMBER FUNCTION

Static variable are normally used to maintain values common to the entire class.

Feature:

• It is initialized to zero when the first object is created. No other initialization is permitted

• only one copy of that member is created for the entire class and is shared by all the objects

• It is only visible within the class, but its life time is the entire class type and scope of each

static member variable must be defined outside the class

• It is stored separately rather than objects

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 23

Eg: static int count//count is initialized to zero when an object is created.

int classname::count;//definition of static data member

#include<iostream.h>

#include<conio.h>

 class stat

{

 int code;

 static int count;

 public:

 stat()

 {

 code=++count;

 }

 void showcode()

 {

 cout<<"\n\tObject number is :"<<code;

 }

 static void showcount()

 {

 cout<<"\n\tCount Objects :"<<count;

 }

};

int stat::count;

void main()

{

 clrscr();

 stat obj1,obj2;

 obj1.showcount();

 obj1.showcode();

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 24

 obj2.showcount();

 obj2.showcode();

 getch();

}

Output:

Count Objects: 2

Object Number is: 1

Count Objects: 2

Object Number is: 2

INLINE FUNCTION

An inline function is a function that is expanded in line when it is invoked. The compiler

replaces the function call with corresponding function code. The inline functions are defined as

follows:

 inline function-header

 {

 Function body;

 }

Example:

inline double cube(double a)

 {

 Return(a*a*a);

 }

Some situations where inline expansion may not work are:

 For functions returning values, if a loop , a switch, or a goto exists.

 For functions not returning values, if a return statement exists.

 If functions contain static variables.

 If inline functions are recursive.

-Example program to illustrate inline functions :

#include <iostream.h>

inline float mul(float x, float y)

 { return(x*y); }

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 25

inline double div(double p, double q)

 { return(p/q) ; }

int main()

{

 float a=1.2 ;

 float b=2.3;

 cout<< mul(a,b)<<”\n”;

 cout<< div(a,b)<<”\n”;

 return 0;

}

One of the most useful facilities available in C++ is the facility to defined default argument

values for functions. In the function prototype declaration, the default values are given.

Whenever a call is made to a function without specifying an argument, the program will

automatically assign values to the parameters from the default function prototype declaration.

Default arguments facilitate easy development and maintenance of program.

DIFFERENT TYPES OF CONSTRUCTORS

PARAMETERIZED CONSTRUCTORS

The constructor that can take arguments are called parameterized constructor. The

arguments can be separated by commas and they can be specified within braces similar to the

argument list in function.

When a constructor has been parameterized, the object declaration without parameter

may not work. In case of parameterized constructor, we must provide the appropriate

arguments to the constructor when an object is declared. This can be done in two ways:

· By calling the constructor explicitly.

· By calling the constructor implicitly.

The implicit call method is sometimes known as shorthand method as it is shorter and is easy to

implement.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 26

Program : creating parameterized constructor

#include<iostream.h>

#include<conio.h>

class student

{

private:

int roll,age, marks;

public:

student(int r, int m, int a); //parameterized constructor

void display()

{

cout<<“\nRoll number :” <<roll <<endl;

cout<<“Total marks : <<marks<<endl;

cout<<“Age:”<<age<<endl;

}

}; //end of class declaration

student : : student(int r, int m, int a) //constructor definition

{

roll = r;

marks =m;

age=a;

}

int main()

{

Student manoj(5,430,16); //object creation

Cout<<”\n Data of student 1:”<<endl;

manoj.display();

Student ram(6,380,15); //object creation

Cout<<”\n Data of student 1:”<<endl;

ram.display();

getch();

return 0;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 27

}

Data of student 1:

Roll number : 5

Total Marks : 430

Age : 16

Data of student 2:

Roll number : 6

Total Marks : 380

Age : 15

COPY CONSTRUCTOR

Copy constructor is a constructor which creates an object by initializing it with an object of

the same class, which has been created previously. The copy constructor is used to:

 Initialize one object from another of the same type.

 Copy an object to pass it as an argument to a function.

 Copy an object to return it from a function.

Syntax:

classname (const classname &obj)

 {

// body of constructor

}

Program : Copy Constructor

#include<iostream.h>

#include<conio.h>

class student

{

private:

int roll, marks, age;

public:

student(int r,int m,int a) //parameterized constructor

{

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 28

rol l = r;

marks = m;

age = a;

}

student(student &s) //copy constructor

{

roll = s.roll;

marks = s.marks;

age=s.age;

}

void display()

{

cout<<"Roll number :" <<roll <<endl;

cout<<"Total marks :"<<marks<<endl;

cout<<"Age:"<<age<<endl;

}

};

int main()

{

clrscr();

student t(3,350,17); // or student k(t);

student k = t; // invokes copy constructor

cout<<"\nData of student t:"<<endl;

t.display();

cout<<"\n\nData of student k:"<<endl;

k.display();

getch();

return 0;

}

The outout of the above program will be like this:

Data of student t :

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 29

Roll number : 3

Total marks : 350

Age : 17

Data of student k :

Roll number : 3

Total marks : 350

Age : 17

DEFAULT CONSTRUCTOR

n C++, the standard describes the default constructor for a class as a constructor that can be

called with no arguments (this includes a constructor whose parameters all have default

arguments).
[1]

 For example:

class MyClass

{

public:

MyClass(); // constructor declared

private:

int x;

};

MyClass :: MyClass() // constructor defined

{

x = 100;

}

int main()

{

MyClass m; // at runtime, object m is created, and the default constructor is called

}

DYNAMIC CONSTRUCTORS

The constructor can also be used to allocate memory while creating objects. This will enable

the system to allocate the right amount of memory for each object. Allocation of memory to

http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Constructor_%28computer_science%29
http://en.wikipedia.org/wiki/Default_constructor#cite_note-1

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 30

objects at the time of their construction is known as dynamic construction of objects. The

memory is allocated with the help of the new operator.

Program: illustrate the working of dynamic constructors:

#include<iostream.h>

 class Sample

 {

 char *name;

 int length;

 public:

 Sample()

 {

 length = 0;

 name = new char[length + 1];

 }

 Sample (char *s)

 {

 length = strlen(s);

 name = new char[length + 1];

 strcpy(name , s); }

 void display()

 {

 cout<<name<<endl;

 } };

 int main()

 {

 char *first = “ C++ “;

 Sample S1(first), S2(“ABC”), S3(“XYZ”);

 S1.display();

 S2.display();

 S3.display();

 return 0; }

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 31

RESULT :

 C++

 ABC

 XYZ

POINTERS

 C++ pointer can also have address for an member functions. They are known as pointer to

member function.

 Pointer to function is known as call back functions.

 The size of the object is determined by the size of all non-static data members.

Pointer to member use either

 star-dot combination

 arrow notation

Syntax:Class_name *Ptr_var;

 Ptr_var=new student;

class student

{

public:

int rollno;

string name;

void print()

{

cout<<”rollno”<<rollno;

cout<<”name”<<name;

}};

void main() //Star-dot notation

{

student *stu-ptr;

stu-ptr=new student;

(*stu-ptr).rollno=1;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 32

(*stu-ptr).name=”xxx”;

(*stu-ptr).print();

}

CONSTANT DATA MEMBER

These are data variables in class which are made const. They are not initialized during

declaration. Their initialization occur in the constructor.

Example:

class Test

{

 const int i; // Constant Data Member

 public:

 Test (int x)

 {

 i=x;

 }

};

int main()

{

 Test t(10);

 Test s(20);

}

In this program, i is a const data member, in every object its independent copy is present, hence

it is initialized with each object using constructor. Once initialized, it cannot be changed.

Constant class Member function

A const member function never modifies data members in an object.

Syntax :

return_type function_name() const;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 33

Example for const Object and const Member function

class X

{

 int i;

 public:

 X(int x) // Constructor

 {

 i=x;

 }

 int f() const // Constant function

 {

 i++;

}

 int g()

{

 i++;

}

};

int main()

{

X obj1(10); // Non const Object

const X obj2(20); // Const Object

obj1.f(); // No error

obj2.f(); // No error

cout << obj1.i << obj2.i ;

obj1.g(); // No error

obj2.g(); // Compile time error

}

Output : 10 20

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 34

Here, we can see, that const member function never changes data members of class, and it can be

used with both const and non-const object. But a const object can't be used with a member

function which tries to change its data members.

REFERENCES

PROGRAM:

#include<iostream>

using namespace std;

void swap(int &x,int &y)

{

int t;

t=x;

x=y;

y=t;

}

int main()

{

int a,b;

cout<<" enter two integers<a,b>";

cin>>a>>b;

swap(a,b);

cout<<"value of a & b on swap(a,b) in main():"<<a<<" "<<b;

return 0;

}

OUTPUT

 enter two integers<a,b>25 9

value of a & b on swap(a,b) in main():9 25

STORAGE CLASSES

A storage class defines the scope (visibility) and life-time of variables and/or functions within

a C++ Program.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 35

These specifiers precede the type that they modify.

There are following storage classes, which can be used in a C++ Program

auto

register

static

extern

mutable

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

 int mount;

 auto int month;

}

The example above defines two variables with the same storage class, auto can only be used

within functions, i.e., local variables.

The register Storage Class

 The register storage class is used to define local variables that should be stored in a register

instead of RAM.

 This means that the variable has a maximum size equal to the register size and can't have the

unary '&' operator applied to it (as it does not have a memory location).

{

 register int miles;

}

 The register should only be used for variables that require quick access such as counters.

 It should also be noted that defining 'register' does not mean that the variable will be stored in a

register.

 It means that it MIGHT be stored in a register depending on hardware and implementation

restrictions.

The static Storage Class

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 36

 The static storage class instructs the compiler to keep a local variable in existence during the

life-time of the program instead of creating and destroying it each time it comes into and goes

out of scope.

 Therefore, making local variables static allows them to maintain their values between function

calls.

 The static modifier may also be applied to global variables. When this is done, it causes that

variable's scope to be restricted to the file in which it is declared.

 In C++, when static is used on a class data member, it causes only one copy of that member to

be shared by all objects of its class.

#include <iostream.h>

void func(void);

static int count = 10; /* Global variable */

main()

{

 while(count--)

 {

 func();

 }

 return 0;

}

// Function definition

void func(void)

{

 static int i = 5; // local static variable

 i++;

 cout << "i is " << i ;

 cout << " and count is " << count <<endl;

}

Output:

i is 6 and count is 9

i is 7 and count is 8

i is 8 and count is 7

i is 9 and count is 6

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 37

i is 10 and count is 5

i is 11 and count is 4

i is 12 and count is 3

i is 13 and count is 2

i is 14 and count is 1

i is 15 and count is 0

The extern Storage Class

 The extern storage class is used to give a reference of a global variable that is visible to ALL

the program files.

 When 'extern' is used the variable cannot be initialized as all it does is point the variable name

at a storage location that has been previously defined.

#include <iostream>

int count ;

extern void write_extern();

main()

{

 count = 5;

 write_extern();

}

The mutable Storage Class

 The mutable specifier applies only to class objects.

 It allows a member of an object to override constness.

 That is, a mutable member can be modified by a const member function.

DYNAMIC MEMORY ALLOCATION

 Memory allocated "on the fly" during run time

 dynamically allocated space usually placed in a program segment known as the heap or

the free store

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 38

 Exact amount of space or number of items does not have to be known by the compiler in

advance.

 For dynamic memory allocation, pointers are crucial

 We can dynamically allocate storage space while the program is running, but we cannot

create new variable names "on the fly"

 For this reason, dynamic allocation requires two steps:

 Creating the dynamic space.

 Storing its address in a pointer (so that the space can be accesed)

 To dynamically allocate memory in C++, we use the new operator.

De-allocation:

 Deallocation is the "clean-up" of space being used for variables or other data storage

 Compile time variables are automatically deallocated based on their known extent (this is

the same as scope for "automatic" variables)

 It is the programmer's job to deallocate dynamically created space

 To de-allocate dynamic memory, we use the delete operator

 C++ integrates the operators new and delete for allocating dynamic memory.

New operator:

Allocate memory at run time within the heap for the variable of a given type using a special

operator in C++ which returns the address of the space allocated. This operator is

called new operator.

There is following generic syntax to use new operator to allocate memory dynamically for any

data-type.

new datatype;

Here, data-type could be any built-in data type including an array or any user defined data types

include class or structure. Let us start with built-in data types.

To allocate space dynamically, use the unary operator new, followed by the type being allocated.

 new int; // dynamically allocates an int

 new double; // dynamically allocates a double

If creating an array dynamically, use the same form, but put brackets with a size after the type:

 new int[40]; // dynamically allocates an array of 40 ints

 new double[size]; // dynamically allocates an array of size doubles

 // note that the size can be a variable

These statements above are not very useful by themselves, because the allocated

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 39

Used to free memory allocated with new operator

The delete operator should be called on a pointer to dynamically allocated memory when it is

no longer needed

Can delete a single variable/object or an array

delete PointerName;

delete [] ArrayName;

After delete is called on a memory region, that region should no longer be accessed by the

program

Convention is to set pointer to deleted memory to NULL

Any new must have a corresponding delete --- if not, the program has memory leak.

include <iostream>

#include <cstring>

using namespace std;

int main() {

 int n;

 cout << "Enter total number of students: ";

 cin >> n;

 float* ptr;

 ptr = new float[n]; // memory allocation for n number of floats

 cout << "Enter GPA of students." <<endl;

 for (int i = 0; i < n; ++i) {

 cout << "Student" << i+1 << ": ";

 cin >> *(ptr + i);

 }

 cout << "\nDisplaying GPA of students." << endl;

 for (int i = 0; i < n; ++i) {

 cout << "Student" << i+1 << " :" << *(ptr + i) << endl;

 }

 delete [] ptr; // ptr memory is released

 return 0;

}

Enter total number of students: 4

Enter GPA of students.

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 40

Student1: 3.6

Student2: 3.1

Student3: 3.9

Student4: 2.9

Displaying GPA of students.

Student1 :3.6

Student2 :3.1

Student3 :3.9

Student4 :2.9

DEFAULT ARGUMENTS

Default arguments assign a default value to the parameter, which does not have matching

argument in the function call.

Default values are specified when the function is declared.

The advantages of default arguments are,

• We can use default arguments to add new parameters to the existing function.

• Default arguments can be used to combine similar functions into one.

#include<iostream.h>

int volume(int length, int width = 1, int height = 1);

int main()

{

int a,b,c;

a=solume(4, 6, 2);

b=volume(4, 6);

c=volume(4);

return 0;

}

int volume(int length, int width=1, int height=1)

{

int v;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 41

v=length*width*height;

return v;

}

ROLE OF ‘this’ POINTER

Every object in C++ has access to its own address through an important pointer called this

pointer. The this pointer is an implicit parameter to all member functions. Therefore, inside a

member function, this may be used to refer to the invoking object.

Friend functions do not have a this pointer, because friends are not members of a class. Only

member functions have a this pointer.

#include <iostream>

 using namespace std;

class Box

{

 public:

 // Constructor definition

 Box(double l=2.0, double b=2.0, double h=2.0)

 {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 }

 double Volume()

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 42

 {

 return length * breadth * height;

 }

 int compare(Box box)

 {

 return this->Volume() > box.Volume();

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

int main(void)

{

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 if(Box1.compare(Box2))

 {

 cout << "Box2 is smaller than Box1" <<endl;

CS 6301 PROGRAMMING AND DATA STRUCTURE II Dept of CSE/IT 2016-2017

St.Joseph’s College of Engineering/St.Joseph’s Institute of Technology 43

 }

 else

 {

 cout << "Box2 is equal to or larger than Box1" <<endl;

 }

 return 0;

}

	page11
	page12
	page13
	TOC-PROGRAM:-
	TOC-Output:-

